Modification of SnO2 by acidic FAAc-HI solution for efficient and stable perovskite solar cells with a multifunctional interface

被引:0
作者
Li, Bowen [1 ,2 ,3 ]
Tan, Xinyu [1 ,2 ]
Xiang, Peng [1 ,2 ]
Yan, Wensheng [1 ,2 ]
Zhang, Kai [1 ,2 ,3 ]
Li, Ji [1 ,2 ,3 ]
Wu, Yinglin [1 ,2 ]
Liu, Yiming [1 ,2 ]
Yu, Meiling [1 ,2 ]
Han, Hongwei [3 ]
机构
[1] China Three Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmetall Crystalline & Energy Co, Yichang 443002, Hubei, Peoples R China
[2] China Three Gorges Univ, Coll Mat & Chem Engn, Hubei Prov Engn Technol Res Ctr Microgrid, Yichang 443002, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
SnO2; Perovskite solar cells; Interface passivation; Neutralized hydroxyl; Stability; SURFACE MODIFICATION; EXTRACTION; STABILITY;
D O I
10.1557/s43578-022-00689-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tin oxide (SnO2) offers unique advantages as the electronic transport layer (ETL) of perovskite solar cells, such as low-temperature preparation and excellent electron extraction capability. However, the SnO2 semiconductor process is prone to forming a hydroxyl group enrichment at the interface, resulting in insufficient stability. Furthermore, the potassium hydroxide stabilizer in commercial SnO2 can degrade the perovskite layer. Herein, acidic formamidine acetate and hydroiodic acid (FAAc-HI)-mixed solutions are added into a commercially SnO2 aqueous to alleviate hydroxyl enrichment and neutralize the OH- in SnO2-ETL. As a result, the modified SnO2/perovskite interface exhibits faster charge extraction in comparison with that of the primeval interface. The as-prepared device achieves a champion power conversion efficiency (PCE) of 21.25%, with a J(sc) increasing from 23.84 mA cm(-2) in the untreated device to 24.71 mA cm(-2). When stored in an air environment (40% RH, 25 degrees C) for 600 h, it retains 90% of its initial efficiency compared to 80% of the control group.
引用
收藏
页码:2932 / 2941
页数:10
相关论文
共 51 条
[1]   High Efficiency Low-Temperature Processed Perovskite Solar Cells Integrated with Alkali Metal Doped ZnO Electron Transport Layers [J].
Azmi, Randi ;
Hwang, Sunbin ;
Yin, Wenping ;
Kim, Tae-Wook ;
Ahn, Tae Kyu ;
Jang, Sung-Yeon .
ACS ENERGY LETTERS, 2018, 3 (06) :1241-1246
[2]   Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J].
Bu, Tongle ;
Li, Jing ;
Zheng, Fei ;
Chen, Weijian ;
Wen, Xiaoming ;
Ku, Zhiliang ;
Peng, Yong ;
Zhong, Jie ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
NATURE COMMUNICATIONS, 2018, 9
[3]   Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability [J].
Chen, Taotao ;
Tong, Guoqing ;
Xu, Enze ;
Li, Huan ;
Li, Pengcheng ;
Zhu, Zhifeng ;
Tang, Jianxin ;
Qi, Yabing ;
Jiang, Yang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) :20597-20603
[4]   Dual Passivation of Perovskite and SnO2 for High-Efficiency MAPbI3 Perovskite Solar Cells [J].
Chen, Yali ;
Zuo, Xuejiao ;
He, Yiyang ;
Qian, Fang ;
Zuo, Shengnan ;
Zhang, Yalan ;
Liang, Lei ;
Chen, Zuqin ;
Zhao, Kui ;
Liu, Zhike ;
Gou, Jing ;
Liu, Shengzhong .
ADVANCED SCIENCE, 2021, 8 (05)
[5]   Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness [J].
Dong, Qingshun ;
Zhu, Chao ;
Chen, Min ;
Jiang, Chen ;
Guo, Jingya ;
Feng, Yulin ;
Dai, Zhenghong ;
Yadavalli, Srinivas K. ;
Hu, Mingyu ;
Cao, Xun ;
Li, Yuqian ;
Huang, Yizhong ;
Liu, Zheng ;
Shi, Yantao ;
Wang, Liduo ;
Padture, Nitin P. ;
Zhou, Yuanyuan .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   Small amines bring big benefits to perovskite-based solar cells and light-emitting diodes [J].
Feng, Wenhuai ;
Tan, Ying ;
Yang, Meifang ;
Jiang, Yong ;
Lei, Bing-Xin ;
Wang, Lianzhou ;
Wu, Wu-Qiang .
CHEM, 2022, 8 (02) :351-383
[7]   Highly Efficient and Stable Perovskite Solar Cells Enabled by Low-Cost Industrial Organic Pigment Coating [J].
He, Qingquan ;
Worku, Michael ;
Liu, He ;
Lochner, Eric ;
Robb, Alex J. ;
Lteif, Sandrine ;
Vellore Winfred, J. S. Raaj ;
Hanson, Kenneth ;
Schlenoff, Joseph B. ;
Kim, Bumjoon J. ;
Ma, Biwu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (05) :2485-2492
[8]   Modification of SnO2 with Phosphorus-Containing Lewis Acid for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis [J].
Hu, Yanqiang ;
He, Zhengyan ;
Jia, Xiangrui ;
Zhao, Wenkai ;
Zhang, Shufang ;
Jiao, MengMeng ;
Xu, Qinfeng ;
Wang, Dehua ;
Yang, Chuanlu ;
Yuan, Guoliang ;
Han, Liyuan .
SOLAR RRL, 2022, 6 (04)
[9]   Silk fibroin induced homeotropic alignment of perovskite crystals toward high efficiency and stability [J].
Jin, Bowen ;
Ming, Yidong ;
Wu, Zixin ;
Cao, Jinguo ;
Liu, Yuxue ;
Zhu, Yongqi ;
Wang, Shimin ;
Liang, Zihui ;
Wu, Congcong .
NANO ENERGY, 2022, 94
[10]   Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells [J].
Jung, Eui Hyuk ;
Chen, Bin ;
Bertens, Koen ;
Vafaie, Maral ;
Teale, Sam ;
Proppe, Andrew ;
Hou, Yi ;
Zhu, Tong ;
Zheng, Chao ;
Sargent, Edward H. .
ACS ENERGY LETTERS, 2020, 5 (09) :2796-2801