Melanoma Classification from Dermoscopy Images Using Ensemble of Convolutional Neural Networks

被引:24
作者
Raza, Rehan [1 ]
Zulfiqar, Fatima [1 ]
Tariq, Shehroz [1 ]
Anwar, Gull Bano [1 ]
Sargano, Allah Bux [1 ]
Habib, Zulfiqar [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Lahore 54000, Pakistan
基金
欧盟地平线“2020”;
关键词
deep learning; transfer learning; skin cancer; acral lentiginous melanoma; melanoma classification; ensemble learning; data augmentation; SKIN-CANCER;
D O I
10.3390/math10010026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Human skin is the most exposed part of the human body that needs constant protection and care from heat, light, dust, and direct exposure to other harmful radiation, such as UV rays. Skin cancer is one of the dangerous diseases found in humans. Melanoma is a form of skin cancer that begins in the cells (melanocytes) that control the pigment in human skin. Early detection and diagnosis of skin cancer, such as melanoma, is necessary to reduce the death rate due to skin cancer. In this paper, the classification of acral lentiginous melanoma, a type of melanoma with benign nevi, is being carried out. The proposed stacked ensemble method for melanoma classification uses different pre-trained models, such as Xception, Inceptionv3, InceptionResNet-V2, DenseNet121, and DenseNet201, by employing the concept of transfer learning and fine-tuning. The selection of pre-trained CNN architectures for transfer learning is based on models having the highest top-1 and top-5 accuracies on ImageNet. A novel stacked ensemble-based framework is presented to improve the generalizability and increase robustness by fusing fine-tuned pre-trained CNN models for acral lentiginous melanoma classification. The performance of the proposed method is evaluated by experimenting on a Figshare benchmark dataset. The impact of applying different augmentation techniques has also been analyzed through extensive experimentations. The results confirm that the proposed method outperforms state-of-the-art techniques and achieves an accuracy of 97.93%.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Classification for Dermoscopy Images Using Convolutional Neural Networks Based on the Ensemble of Individual Advantage and Group Decision
    Gong, An
    Yao, Xinjie
    Lin, Wei
    IEEE ACCESS, 2020, 8 : 155337 - 155351
  • [2] Forward selection-based ensemble of deep neural networks for melanoma classification in dermoscopy images
    Soylemez, Omer Faruk
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (06) : 1929 - 1943
  • [3] Ensembles of Deep Convolutional Neural Networks for Detecting Melanoma in Dermoscopy Images
    Tziomaka, Melina
    Maglogiannis, Ilias
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 523 - 535
  • [4] Melanoma Classification in Dermoscopy Images via Ensemble Learning on Deep Neural Network
    Song, Jie
    Li, Jiawei
    Ma, Shiqiang
    Tang, Jijun
    Guo, Fei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 751 - 756
  • [5] Convolutional neural networks for the detection of malignant melanoma in dermoscopy images
    Kwiatkowska, Dominika
    Kluska, Piotr
    Reich, Adam
    POSTEPY DERMATOLOGII I ALERGOLOGII, 2021, 38 (03): : 412 - 420
  • [6] Comprehensive analysis of clinical images contributions for melanoma classification using convolutional neural networks
    Rios-Duarte, Jorge A.
    Diaz-Valencia, Andres C.
    Combariza, German
    Feles, Miguel
    Pena-Silva, Ricardo A.
    SKIN RESEARCH AND TECHNOLOGY, 2024, 30 (05)
  • [7] Dermoscopic Image Classification Method Using an Ensemble of Fine-Tuned Convolutional Neural Networks
    Shen, Xin
    Wei, Lisheng
    Tang, Shaoyu
    SENSORS, 2022, 22 (11)
  • [8] Classification of Blood Cancer Images Using a Convolutional Neural Networks Ensemble
    Ma, Kaiqiang
    Sun, Lingling
    Wang, Yaqi
    Wang, Junchao
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [9] Ensemble Method of Convolutional Neural Networks with Directed Acyclic Graph Using Dermoscopic Images: Melanoma Detection Application
    Gouabou, Arthur Cartel Foahom
    Damoiseaux, Jean-Luc
    Monnier, Jilliana
    Iguernaissi, Rabah
    Moudafi, Abdellatif
    Merad, Djamal
    SENSORS, 2021, 21 (12)
  • [10] Ensembles of Convolutional Neural Networks for Skin Lesion Dermoscopy Images Classification
    Hilmy, Muhammad Ammarul
    Sasongko, Priyo Sidik
    2019 3RD INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2019), 2019,