Quantum metrology with imperfect states and detectors

被引:105
作者
Datta, Animesh [1 ]
Zhang, Lijian [1 ]
Thomas-Peter, Nicholas [1 ]
Dorner, Uwe [1 ,2 ]
Smith, Brian J. [1 ]
Walmsley, Ian A. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
PHASE; LIMIT;
D O I
10.1103/PhysRevA.83.063836
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this paper, we identify the major sources of imperfection of an optical sensor: input state preparation inefficiency, sensor losses, and detector inefficiency. The second of these has received much attention; we show that it is the least damaging to surpassing the standard quantum limit in a optical interferometric sensor. Further, we show that photonic states that can be prepared in the laboratory using feasible resources allow a measurement strategy using photon-number-resolving detectors that not only attain the Heisenberg limit for phase estimation in the absence of losses, but also deliver close to the maximum possible precision in realistic scenarios including losses and inefficiencies. In particular, we give bounds for the tradeoff between the three sources of imperfection that will allow true quantum-enhanced optical metrology
引用
收藏
页数:6
相关论文
共 18 条
[1]   High-NOON States by Mixing Quantum and Classical Light [J].
Afek, Itai ;
Ambar, Oron ;
Silberberg, Yaron .
SCIENCE, 2010, 328 (5980) :879-881
[2]   Direct probing of quantum phase space by photon counting [J].
Banaszek, K ;
Wodkiewicz, K .
PHYSICAL REVIEW LETTERS, 1996, 76 (23) :4344-4347
[3]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[4]   Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements [J].
Campos, RA ;
Gerry, CC ;
Benmoussa, A .
PHYSICAL REVIEW A, 2003, 68 (02) :5
[5]   Optimal Quantum Phase Estimation [J].
Dorner, U. ;
Demkowicz-Dobrzanski, R. ;
Smith, B. J. ;
Lundeen, J. S. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[6]   Quantum-enhanced measurements: Beating the standard quantum limit [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
SCIENCE, 2004, 306 (5700) :1330-1336
[7]   INTERFEROMETRIC DETECTION OF OPTICAL-PHASE SHIFTS AT THE HEISENBERG LIMIT [J].
HOLLAND, MJ ;
BURNETT, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (09) :1355-1358
[8]   Experimental quantum-enhanced estimation of a lossy phase shift [J].
Kacprowicz, M. ;
Demkowicz-Dobrzanski, R. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
NATURE PHOTONICS, 2010, 4 (06) :357-360
[9]   Bootstrapping approach for generating maximally path-entangled photon states [J].
Kapale, Kishore T. ;
Dowling, Jonathan P. .
PHYSICAL REVIEW LETTERS, 2007, 99 (05)
[10]   Creation of large-photon-number path entanglement conditioned on photodetection [J].
Kok, P ;
Lee, H ;
Dowling, JP .
PHYSICAL REVIEW A, 2002, 65 (05) :5