Quasi-Emulsion Confined Synthesis of Edge-Rich Ultrathin MoS2 Nanosheets/Graphene Hybrid for Enhanced Hydrogen Evolution

被引:62
作者
Yin, Xuying [1 ]
Yan, Ya [1 ,3 ]
Miao, Mao [2 ]
Zhan, Ke [1 ]
Li, Pingwei [1 ]
Yang, Junhe [1 ,3 ]
Zhao, Bin [1 ,3 ]
Xia, Bao Yu [2 ,4 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, 516 Jungong Rd, Shanghai 200093, Peoples R China
[2] Huazhong Univ Sci & Technol, Key Lab Mat Chem Energy Convers & Storage, Hubei Key Lab Mat Chem & Serv Failure, Minist Educ,Sch Chem & Chem Engn,Wuhan Natl Lab O, Wuhan 430074, Hubei, Peoples R China
[3] Shanghai Innovat Inst Mat, Shanghai 200444, Peoples R China
[4] Huazhong Univ Sci & Technol, Shenzhen Inst, Shenzhen 518000, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
electrocatalyst; edga-rich; hydrogen evolution reaction; molybdenum sulfide; quasi-emulsion; SITES; ELECTROCATALYSTS; GRAPHENE; CATALYST; CHEMISTRY; DENSITY; FILMS;
D O I
10.1002/chem.201703493
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-purity hydrogen produced by water splitting is considered as one of the most promising fuels to replace traditional fossil fuels. Developing highly efficient electrocatalysts toward hydrogen evolution is vital for the realization of large-scale H-2 generation. Glycerol is used herein in a facile solvothermal process to synthesize edge-rich ultrathin MoS2/reduced graphene oxide (RGO) composites. The introduction of glycerol plays an important role in the formation of such interesting structures. The MoS2/RGO electrocatalyst exhibits excellent hydrogen evolution reaction (HER) activity and remarkable stability, owing to the rich active edges and improved electrical conductivity of the catalyst composites. This work provides new insights to engineer the structures of MoSx-based composites and thus achieves more active and efficient electrocatalysts.
引用
收藏
页码:556 / 560
页数:5
相关论文
共 36 条
[11]  
Jin B., 2016, Angew. Chem. Int. Ed., V128, P12440
[12]   Aligned MoOx/MoS2 Core-Shell Nanotubular Structures with a High Density of Reactive Sites Based on Self-Ordered Anodic Molybdenum Oxide Nanotubes [J].
Jin, Bowen ;
Zhou, Xuemei ;
Huang, Li ;
Licklederer, Markus ;
Yang, Min ;
Schmuki, Patrik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (40) :12252-12256
[13]  
Kibsgaard J, 2012, NAT MATER, V11, P963, DOI [10.1038/NMAT3439, 10.1038/nmat3439]
[14]   Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers [J].
Kong, Desheng ;
Wang, Haotian ;
Cha, Judy J. ;
Pasta, Mauro ;
Koski, Kristie J. ;
Yao, Jie ;
Cui, Yi .
NANO LETTERS, 2013, 13 (03) :1341-1347
[15]   Ionic liquid assisted hydrothermal synthesis of hollow vesicle-like MoS2 microspheres [J].
Li, Ning ;
Chai, Yongming ;
Li, Yanpeng ;
Tang, Zhe ;
Dong, Bin ;
Liu, Yunqi ;
Liu, Chenguang .
MATERIALS LETTERS, 2012, 66 (01) :236-238
[16]   MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction [J].
Li, Yanguang ;
Wang, Hailiang ;
Xie, Liming ;
Liang, Yongye ;
Hong, Guosong ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (19) :7296-7299
[17]   Ultrahigh Hydrogen Evolution Performance of Under-Water "Superaerophobic" MoS2 Nanostructured Electrodes [J].
Lu, Zhiyi ;
Zhu, Wei ;
Yu, Xiaoyou ;
Zhang, Haichuan ;
Li, Yingjie ;
Sun, Xiaoming ;
Wang, Xinwei ;
Wang, Hao ;
Wang, Jingming ;
Luo, Jun ;
Lei, Xiaodong ;
Jiang, Lei .
ADVANCED MATERIALS, 2014, 26 (17) :2683-2687
[18]   Renewable energy strategies for sustainable development [J].
Lund, Henrik .
ENERGY, 2007, 32 (06) :912-919
[19]   Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts [J].
Merki, Daniel ;
Hu, Xile .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :3878-3888
[20]   Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water [J].
Merki, Daniel ;
Fierro, Stephane ;
Vrubel, Heron ;
Hu, Xile .
CHEMICAL SCIENCE, 2011, 2 (07) :1262-1267