Restricted Binary Strings and Generalized Fibonacci Numbers

被引:7
作者
Bernini, Antonio [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale GB Morgagni 65, I-50134 Florence, Italy
来源
CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2017) | 2017年 / 10248卷
关键词
Generalized Fibonacci numbers; Restricted strings; Consecutive patterns avoidance; GENERATING TREES;
D O I
10.1007/978-3-319-58631-1_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide some interesting relations involving k-generalized Fibonacci numbers between the set F-n((k)) n of length n binary strings avoiding k of consecutive 0's and the set of length n strings avoiding k + 1 consecutive 0's and 1's with some more restriction on the first and last letter, via a simple bijection. In the special case k = 2 a probably new interpretation of Fibonacci numbers is given. Moreover, we describe in a combinatorial way the relation between the strings of F-n((k)) n with an odd numbers of 1's and the ones with an even number of 1's.
引用
收藏
页码:32 / 43
页数:12
相关论文
共 17 条
[1]   The Dyck pattern poset [J].
Bacher, Axel ;
Bernini, Antonio ;
Ferrari, Luca ;
Gunby, Benjamin ;
Pinzani, Renzo ;
West, Julian .
DISCRETE MATHEMATICS, 2014, 321 :12-23
[2]   Non-overlapping matrices [J].
Barcucci, Elena ;
Bernini, Antonio ;
Bilotta, Stefano ;
Pinzani, Renzo .
THEORETICAL COMPUTER SCIENCE, 2017, 658 :36-45
[3]  
Bernini A., 2013, DISCRETE MATH THEOR, P683
[4]   A Gray code for cross-bifix-free sets [J].
Bernini, Antonio ;
Bilotta, Stefano ;
Pinzani, Renzo ;
Vajnovszki, Vincent .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2017, 27 (02) :184-196
[5]   Prefix partitioned gray codes for particular cross-bifix-free sets [J].
Bernini, Antonio ;
Bilotta, Stefano ;
Pinzani, Renzo ;
Sabri, Ahmad ;
Vajnovszki, Vincent .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2014, 6 (04) :359-369
[6]  
Bernini A, 2011, ELECTRON J COMB, V18
[7]   Cross-Bifix-Free Codes Within a Constant Factor of Optimality [J].
Chee, Yeow Meng ;
Kiah, Han Mao ;
Purkayastha, Punarbasu ;
Wang, Chengmin .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (07) :4668-4674
[8]   Consecutive patterns in permutations [J].
Elizalde, S ;
Noy, M .
ADVANCES IN APPLIED MATHEMATICS, 2003, 30 (1-2) :110-125
[9]   Generating trees for permutations avoiding generalized patterns [J].
Elizalde, Sergi .
ANNALS OF COMBINATORICS, 2007, 11 (3-4) :435-458
[10]   On abab-free and abba-free set partitions [J].
Klazar, M .
EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (01) :53-68