Tailoring the Solvation Sheath of Cations by Constructing Electrode Front-Faces for Rechargeable Batteries

被引:134
作者
Chang, Zhi [1 ]
Yang, Huijun [1 ]
Qiao, Yu [1 ]
Zhu, Xingyu [1 ]
He, Ping [2 ,3 ]
Zhou, Haoshen [1 ,2 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Dept Energy Sci & Engn, Nanjing 210093, Peoples R China
关键词
aqueous zinc-metal batteries; desolvated electrolytes; lithium-metal batteries; metal-organic frameworks; solvation sheath; METAL-ORGANIC FRAMEWORKS; LITHIUM-ION BATTERY; HIGH-ENERGY-DENSITY; LI-METAL; LIQUID-PHASE; CHALLENGES; ANODE; INTERPHASES; CONVERSION; STABILITY;
D O I
10.1002/adma.202201339
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solvent molecules within the solvation sheath of cations (e.g., Li+, Na+, Zn2+) are easily to be dehydrogenated especially when coupled with high-voltage cathodes, and lead to detrimental electrolytes decompositions which finally accelerate capacity decays of rechargeable batteries. Tremendous efforts are devoted to tackle with this long-lasting issue. Among them, salt-concentrated strategies are frequently employed to tailor the solvation sheath of cations and improve the stabilities of electrolytes. However, the cost challenges caused by adding extra dose of expensive salts, additives/cosolvents in preparing highly concentrated electrolytes, hinder their further utilizations to some extent. Introducing porous materials-based electrode front-faces on the surface of electrodes even within dilute electrolytes can transfer the high-energy-state desolvated solvents from the reactive electrodes to the nonconductive porous material surfaces, thus eliminate the contact chances between desolvated solvents and electrode materials, and greatly reduce solvents-related decomposition issues. Herein, recent advances in using electrode front-faces to tailor the solvation sheath of metal ions for rechargeable batteries are discussed. Finally, perspectives to the future challenges and opportunities of constructing electrode front-faces to tailor the solvation sheath of cations by constructing electrode front-face for rechargeable batteries are provided.
引用
收藏
页数:22
相关论文
共 135 条
[1]   A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability [J].
Amanchukwu, Chibueze, V ;
Yu, Zhiao ;
Kong, Xian ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (16) :7393-7403
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte [J].
Bai, Songyan ;
Sun, Yang ;
Yi, Jin ;
He, Yibo ;
Qiao, Yu ;
Zhou, Haoshen .
JOULE, 2018, 2 (10) :2117-2132
[5]   A long-life lithium-sulphur battery by integrating zinc-organic framework based separator [J].
Bai, Songyan ;
Zhu, Kai ;
Wu, Shichao ;
Wang, Yarong ;
Yi, Jin ;
Ishida, Masayoshi ;
Zhou, Haoshen .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (43) :16812-16817
[6]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[7]   VIBRATIONAL STUDIES OF LITHIUM PERCHLORATE IN PROPYLENE CARBONATE SOLUTIONS [J].
BATTISTI, D ;
NAZRI, GA ;
KLASSEN, B ;
AROCA, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (22) :5826-5830
[8]   Molecular dynamics simulations of 1,2-dimethoxyethane/water solutions. 1. Conformational and structural properties [J].
Bedrov, D ;
Borodin, O ;
Smith, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (29) :5683-5690
[9]   Anodes for Rechargeable Lithium-Sulfur Batteries [J].
Cao, Ruiguo ;
Xu, Wu ;
Lv, Dongping ;
Xiao, Jie ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[10]   Controlling Li deposition below the interface [J].
Cao, Wenzhuo ;
Li, Quan ;
Yu, Xiqian ;
Li, Hong .
ESCIENCE, 2022, 2 (01) :47-78