Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks

被引:115
作者
Papari, Mohammad M. [1 ]
Yousefi, Fakhri [2 ]
Moghadasi, Jalil [2 ]
Karimi, Hajir [3 ]
Campo, Antonio [4 ]
机构
[1] Shiraz Univ Technol, Dept Chem, Shiraz 71555313, Iran
[2] Shiraz Univ, Dept Chem, Shiraz 71454, Iran
[3] Univ Yasuj, Dept Chem Engn, Yasuj 75914353, Iran
[4] Univ Texas San Antonio, Dept Mech Engn, San Antonio, TX 78239 USA
关键词
Carbon nanotube; Heat transfer; Nanofluid; Thermal conductivity; CARBON-NANOTUBE; AQUEOUS SUSPENSIONS; INTERFACIAL LAYERS; BROWNIAN-MOTION; FLUID-FLOW; LIQUID; ENHANCEMENT; DYNAMICS; COMPOSITES; SIMULATION;
D O I
10.1016/j.ijthermalsci.2010.09.006
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the present investigation, neural network method is employed to estimate thermal conductivity of nanofluids consisting of multi-walled carbon nanotubes (MWCNTs) suspended in oil (alpha-olfin), decene (DE), distilled water (DW), ethylene glycol (EG) and also single-walled carbon nanotubes (SWCNTs) in epoxy and poly methylmethacrylate (PMMA). The results obtained have been compared with other theoretical models as well as experimental values. The predicted thermal conductivities are in good agreement with the literature values. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 59 条
[1]   Thermal conductivity of nanofluids - Experimental and theoretical [J].
Assael, M. J. ;
Metaxa, I. N. ;
Kakosimos, K. ;
Constantinou, D. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2006, 27 (04) :999-1017
[2]   Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants [J].
Assael, MJ ;
Metaxa, IN ;
Arvanitidis, J ;
Christofilos, D ;
Lioutas, C .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2005, 26 (03) :647-664
[3]   Thermal conductivity of suspensions of carbon nanotubes in water [J].
Assael, MJ ;
Chen, CF ;
Metaxa, I ;
Wakeham, WA .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2004, 25 (04) :971-985
[4]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[5]   Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids [J].
Bhattacharya, P ;
Saha, SK ;
Yadav, A ;
Phelan, PE ;
Prasher, RS .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) :6492-6494
[6]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[7]   Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites [J].
Bryning, MB ;
Islam, MF ;
Kikkawa, JM ;
Yodh, AG .
ADVANCED MATERIALS, 2005, 17 (09) :1186-+
[8]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[9]   InGaN nano-ring structures for high-efficiency light emitting diodes [J].
Choi, HW ;
Jeon, CW ;
Liu, C ;
Watson, IM ;
Dawson, MD ;
Edwards, PR ;
Martin, RW ;
Tripathy, S ;
Chua, SJ .
APPLIED PHYSICS LETTERS, 2005, 86 (02) :021101-1
[10]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254