Discriminant loci of ample and spanned line bundles

被引:4
作者
Lanteri, A. [2 ]
Munoz, R. [1 ]
机构
[1] Univ Rey Juan Carlos, Dept Math Appl, Madrid 28933, Spain
[2] F Enriques Univ, Dipartmento Matemat, Milan, Italy
关键词
D O I
10.1016/j.jpaa.2007.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, L, V) be a triplet where X is an irreducible smooth complex projective variety, L is an ample and spanned line bundle on X and V subset of H-0(X, L) spans L. The discriminant locus D(X, V) subset of vertical bar V vertical bar is the algebraic subset of singular elements of vertical bar V vertical bar. We study the components of D(X, V) in connection with the jumping sets of (X, V), generalizing the classical biduality theorem. We also deal with the degree of the discriminant (codegree of (X, L, V)) giving some bounds on it and classifying curves and surfaces of codegree 2 and 3. We exclude the possibility for the codegree to be 1. Significant examples are provided. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:808 / 831
页数:24
相关论文
共 27 条
[1]   Singular schemes of hypersurfaces [J].
Aluffi, P .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (02) :325-351
[2]  
[Anonymous], 1978, Principles of algebraic geometry
[3]  
Beauville A., 1978, ASTERISQUE, V54
[4]  
BELTRAMETTI M, 1995, GRUYTER EXPOSITIONS, V16
[5]   Peculiar loci of ample and spanned line bundles [J].
Besana, GM ;
Di Rocco, S ;
Lanteri, A .
MANUSCRIPTA MATHEMATICA, 2003, 112 (02) :197-219
[6]  
CORRESPONDENCE XXX, 1957, AM J MATH, V79, P951
[7]  
de Jong T., 2000, Local Analytic Geometry
[8]  
Edge WL., 1931, THEORY RULED SURFACE
[9]   VARIETIES WITH SMALL DUAL VARIETIES .1. [J].
EIN, L .
INVENTIONES MATHEMATICAE, 1986, 86 (01) :63-74
[10]  
Fischer G., 2001, ADV LECT MATH