Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations

被引:54
作者
Anthony, Sajitha A. [1 ]
Burrell, Anika L. [2 ]
Johnson, Matthew C. [2 ]
Duong-Ly, Krisna C. [1 ]
Kuo, Yin-Ming [1 ]
Simonet, Jacqueline C. [1 ]
Michener, Peter [3 ]
Andrews, Andrew [1 ]
Kollman, Justin M. [2 ]
Peterson, Jeffrey R. [1 ]
机构
[1] Fox Chase Canc Ctr, Canc Biol Program, Philadelphia, PA 19111 USA
[2] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[3] Drexel Univ, Coll Med, Dept Biochem & Mol Biol, Philadelphia, PA 19102 USA
基金
美国国家卫生研究院;
关键词
INOSINE MONOPHOSPHATE DEHYDROGENASE; METABOLIC ENZYMES; SACCHAROMYCES-CEREVISIAE; ROD/RING STRUCTURES; MYCOPHENOLIC-ACID; REORGANIZATION; FILAMENTATION; PROTEINS; RINGS; YEAST;
D O I
10.1091/mbc.E17-04-0263
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Several metabolic enzymes undergo reversible polymerization into macromolecular assemblies. The function of these assemblies is often unclear, but in some cases they regulate enzyme activity and metabolic homeostasis. The guanine nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) forms octamers that polymerize into helical chains. In mammalian cells, IMPDH filaments can associate into micron-length assemblies. Polymerization and enzyme activity are regulated in part by binding of purine nucleotides to an allosteric regulatory domain. ATP promotes octamer polymerization, whereas guanosine triphosphate (GTP) promotes a compact, inactive conformation whose ability to polymerize is unknown. Also unclear is whether polymerization directly alters IMPDH catalytic activity. To address this, we identified point mutants of human IMPDH2 that either prevent or promote polymerization. Unexpectedly, we found that polymerized and nonassembled forms of recombinant IMPDH have comparable catalytic activity, substrate affinity, and GTP sensitivity and validated this finding in cells. Electron microscopy revealed that substrates and allosteric nucleotides shift the equilibrium between active and inactive conformations in both the octamer and the filament. Unlike other metabolic filaments, which selectively stabilize active or inactive conformations, recombinant IMPDH filaments accommodate multiple states. These conformational states are finely tuned by substrate availability and purine balance, while polymerization may allow cooperative transitions between states.
引用
收藏
页码:2600 / 2608
页数:9
相关论文
共 40 条
[31]   Dynamic Reorganization of Metabolic Enzymes into Intracellular Bodies [J].
O'Connell, Jeremy D. ;
Zhao, Alice ;
Ellington, Andrew D. ;
Marcotte, Edward M. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 28, 2012, 28 :89-111
[32]   Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation [J].
Petrovska, Ivana ;
Nueske, Elisabeth ;
Munder, Matthias C. ;
Kulasegaran, Gayathrie ;
Malinovska, Liliana ;
Kroschwald, Sonja ;
Richter, Doris ;
Fahmy, Karim ;
Gibson, Kimberley ;
Verbavatz, Jean-Marc ;
Alberti, Simon .
ELIFE, 2014, 3
[33]   The CBS subdomain of inosine 5'-monophosphate dehydrogenase regulates purine nucleotide turnover [J].
Pimkin, Maxim ;
Markham, George D. .
MOLECULAR MICROBIOLOGY, 2008, 68 (02) :342-359
[34]   RELION: Implementation of a Bayesian approach to cryo-EM structure determination [J].
Scheres, Sjors H. W. .
JOURNAL OF STRUCTURAL BIOLOGY, 2012, 180 (03) :519-530
[35]   SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs [J].
Shaikh, Tanvir R. ;
Gao, Haixiao ;
Baxter, William T. ;
Asturias, Francisco J. ;
Boisset, Nicolas ;
Leith, Ardean ;
Frank, Joachim .
NATURE PROTOCOLS, 2008, 3 (12) :1941-1974
[36]   Filamentation of Metabolic Enzymes in Saccharomyces cerevisiae [J].
Shen, Qing-Ji ;
Kassim, Hakimi ;
Huang, Yong ;
Li, Hui ;
Zhang, Jing ;
Li, Guang ;
Wang, Peng-Ye ;
Yan, Jun ;
Ye, Fangfu ;
Liu, Ji-Long .
JOURNAL OF GENETICS AND GENOMICS, 2016, 43 (06) :393-404
[37]   Ack kinase regulates CTP synthase filaments during Drosophila oogenesis [J].
Strochlic, Todd I. ;
Stavrides, Kevin P. ;
Thomas, Sam V. ;
Nicolas, Emmanuelle ;
O'Reilly, Alana M. ;
Peterson, Jeffrey R. .
EMBO REPORTS, 2014, 15 (11) :1184-1191
[38]   Automated molecular microscopy: The new Leginon system [J].
Suloway, C ;
Pulokas, J ;
Fellmann, D ;
Cheng, A ;
Guerra, F ;
Quispe, J ;
Stagg, S ;
Potter, CS ;
Carragher, B .
JOURNAL OF STRUCTURAL BIOLOGY, 2005, 151 (01) :41-60
[39]   Different Characteristics and Nucleotide Binding Properties of Inosine Monophosphate Dehydrogenase (IMPDH) Isoforms [J].
Thomas, Elaine C. ;
Gunter, Jennifer H. ;
Webster, Julie A. ;
Schieber, Nicole L. ;
Oorschot, Viola ;
Parton, Robert G. ;
Whitehead, Jonathan P. .
PLOS ONE, 2012, 7 (12)
[40]   Pharmacogenetics of the mycophenolic acid targets inosine monophosphate dehydrogenases IMPDH1 and IMPDH2: gene sequence variation and functional genomics [J].
Wu, T-Y ;
Peng, Y. ;
Pelleymounter, L. L. ;
Moon, I. ;
Eckloff, B. W. ;
Wieben, E. D. ;
Yee, V. C. ;
Weinshilboum, R. M. .
BRITISH JOURNAL OF PHARMACOLOGY, 2010, 161 (07) :1584-1598