Cycling degradation of an automotive LiFePO4 lithium-ion battery

被引:319
|
作者
Zhang, Yancheng [1 ]
Wang, Chao-Yang [1 ]
Tang, Xidong [2 ,3 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
[2] Gen Motors, GM R&D, Warren, MI 48090 USA
[3] Gen Motors, Planning, Warren, MI 48090 USA
关键词
LiFePO4; Lithium-ion battery; Cycling degradation; Electrochemical impedance spectroscopy; Electric-only range; LONG-TERM CYCLABILITY; HIGH-TEMPERATURE; HIGH-POWER; ELECTRODE MATERIALS; CARBON; CELLS; PERFORMANCE; CAPACITY; PHOSPHATES; LIXFEPO4;
D O I
10.1016/j.jpowsour.2010.08.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Degradation of a high capacity prismatic LiFePO4 cell with deep cycling at elevated temperature of 50 degrees C is studied by electrochemical impedance spectroscopy as well as capacity and power fading characterization at different test temperatures (45, 25, 0 and -10 degrees C. The capacity and power fade evidently becomes more severe at lower temperature. In particular, the power fade at low temperatures (e.g., 0 and -10 degrees C) rather than capacity loss is a major limitation of the LiFePO4 cell. The primary mechanism for capacity fade is loss of cyclable lithium in the cell resulting from lithium-consuming solid electrolyte interphase (SEI) layer growth and side reactions. The increased interfacial resistance (R-W) due to the catalytic growth of SEI layer on the graphite anode and increased electrolyte resistance are the main sources for power fade. (C) Elsevier B.V. All rights reserved.
引用
收藏
页码:1513 / 1520
页数:8
相关论文
共 50 条
  • [1] A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery
    Miao, Cui
    Bai, Peifeng
    Jiang, Qianqian
    Sun, Shuqing
    Wang, Xingyao
    JOURNAL OF POWER SOURCES, 2014, 246 : 232 - 238
  • [2] A lithium-ion battery based on LiFePO4 and silicon nanowires
    Prosini, Pier Paolo
    Cento, Cinzia
    Rufoloni, Alessandro
    Rondino, Flaminia
    Santoni, Antonino
    SOLID STATE IONICS, 2015, 269 : 93 - 97
  • [3] Effects of Fibrous Nickel Additives on the Electrochemical Properties of LiFePO4 Cathode for Lithium-ion Battery
    Zhu, Sheng-wen
    Jing, Mao-xiang
    Pi, Zhi-chao
    Chen, Li-li
    Shen, Xiang-qian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (12): : 10597 - 10606
  • [4] Synthesis of LiFePO4/C cathode material for lithium-ion battery
    Tong Hui
    Hu Guo-Hua
    Hu Guo-Rong
    Peng Zhong-Dong
    Zhang Xin-Long
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (12) : 2159 - 2164
  • [5] Glass-ceramic LiFePO4 for lithium-ion rechargeable battery
    Nagakane, T.
    Yamauchi, H.
    Yuki, K.
    Ohji, M.
    Sakamoto, A.
    Komatsu, T.
    Honma, T.
    Zou, M.
    Park, G.
    Sakai, T.
    SOLID STATE IONICS, 2012, 206 : 78 - 83
  • [6] Hydrothermal synthesis of hierarchical LiFePO4 microspheres for lithium ion battery
    Wang, Qi
    Deng, SiXu
    Wang, Hao
    Xie, Ming
    Liu, JingBing
    Yan, Hui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 553 : 69 - 74
  • [7] A lithium-ion battery based on LiFePO4 and silicon/reduced graphene oxide nanocomposite
    Prosini, Pier Paolo
    Carewska, Maria
    Maroni, Fabio
    Tossici, Roberto
    Nobili, Francesco
    SOLID STATE IONICS, 2015, 283 : 145 - 151
  • [8] Preparation of porous-structured LiFePO4/C composite by vacuum sintering for lithium-ion battery
    Yao, Yaochun
    Qu, Pengwei
    Gan, Xiangkun
    Huang, Xiaopeng
    Zhao, Quanfeng
    Liang, Feng
    CERAMICS INTERNATIONAL, 2016, 42 (16) : 18303 - 18311
  • [9] Study on the Thermal Effect of LiFePO4 Lithium Ion Battery
    Yang Dong
    Xi Chenbin
    Wang Songyang
    Hu Jianhua
    Yang Biao
    Sun Yaojie
    ACTA CHIMICA SINICA, 2011, 69 (17) : 1987 - 1990
  • [10] LiFePO4 Mesocrystals for Lithium-Ion Batteries
    Popovic, Jelena
    Demir-Cakan, Rezan
    Tornow, Julian
    Morcrette, Mathieu
    Su, Dang Sheng
    Schloegl, Robert
    Antonietti, Markus
    Titirici, Maria-Magdalena
    SMALL, 2011, 7 (08) : 1127 - 1135