Cycling degradation of an automotive LiFePO4 lithium-ion battery

被引:317
|
作者
Zhang, Yancheng [1 ]
Wang, Chao-Yang [1 ]
Tang, Xidong [2 ,3 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
[2] Gen Motors, GM R&D, Warren, MI 48090 USA
[3] Gen Motors, Planning, Warren, MI 48090 USA
关键词
LiFePO4; Lithium-ion battery; Cycling degradation; Electrochemical impedance spectroscopy; Electric-only range; LONG-TERM CYCLABILITY; HIGH-TEMPERATURE; HIGH-POWER; ELECTRODE MATERIALS; CARBON; CELLS; PERFORMANCE; CAPACITY; PHOSPHATES; LIXFEPO4;
D O I
10.1016/j.jpowsour.2010.08.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Degradation of a high capacity prismatic LiFePO4 cell with deep cycling at elevated temperature of 50 degrees C is studied by electrochemical impedance spectroscopy as well as capacity and power fading characterization at different test temperatures (45, 25, 0 and -10 degrees C. The capacity and power fade evidently becomes more severe at lower temperature. In particular, the power fade at low temperatures (e.g., 0 and -10 degrees C) rather than capacity loss is a major limitation of the LiFePO4 cell. The primary mechanism for capacity fade is loss of cyclable lithium in the cell resulting from lithium-consuming solid electrolyte interphase (SEI) layer growth and side reactions. The increased interfacial resistance (R-W) due to the catalytic growth of SEI layer on the graphite anode and increased electrolyte resistance are the main sources for power fade. (C) Elsevier B.V. All rights reserved.
引用
收藏
页码:1513 / 1520
页数:8
相关论文
共 50 条
  • [1] Synthesis and electrochemical analysis of LiFePO4 for lithium-ion battery
    Tang, Zhi-Yuan
    Gao, Fei
    Xue, Jian-Jun
    Yu, Ming-Yuan
    Guo, Wen-Shang
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2007, 40 (04): : 468 - 472
  • [2] A lithium-ion battery based on LiFePO4 and silicon nanowires
    Prosini, Pier Paolo
    Cento, Cinzia
    Rufoloni, Alessandro
    Rondino, Flaminia
    Santoni, Antonino
    SOLID STATE IONICS, 2015, 269 : 93 - 97
  • [3] A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery
    Miao, Cui
    Bai, Peifeng
    Jiang, Qianqian
    Sun, Shuqing
    Wang, Xingyao
    JOURNAL OF POWER SOURCES, 2014, 246 : 232 - 238
  • [4] The Recent review of LiFePO4 Cathode Materials for Lithium-ion Battery
    Tang, Zhiyuan
    Wang, Xiaojing
    Yan, Ji
    Ma, Li
    2011 AASRI CONFERENCE ON INFORMATION TECHNOLOGY AND ECONOMIC DEVELOPMENT (AASRI-ITED 2011), VOL 3, 2011, : 81 - 85
  • [5] The Recent review of LiFePO4 Cathode Materials for Lithium-ion Battery
    Tang, Zhiyuan
    Wang, Xiaojing
    Yan, Ji
    Ma, Li
    2011 INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND NEURAL COMPUTING (FSNC 2011), VOL VII, 2011, : 515 - 519
  • [6] Synthesis of LiFePO4/C cathode material for lithium-ion battery
    Tong Hui
    Hu Guo-Hua
    Hu Guo-Rong
    Peng Zhong-Dong
    Zhang Xin-Long
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (12) : 2159 - 2164
  • [7] Glass-ceramic LiFePO4 for lithium-ion rechargeable battery
    Nagakane, T.
    Yamauchi, H.
    Yuki, K.
    Ohji, M.
    Sakamoto, A.
    Komatsu, T.
    Honma, T.
    Zou, M.
    Park, G.
    Sakai, T.
    SOLID STATE IONICS, 2012, 206 : 78 - 83
  • [8] Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery
    Forgez, Christophe
    Do, Dinh Vinh
    Friedrich, Guy
    Morcrette, Mathieu
    Delacourt, Charles
    JOURNAL OF POWER SOURCES, 2010, 195 (09) : 2961 - 2968
  • [9] Performance enhancement of LiFePO4 for cathode material of lithium-ion battery
    Zhang, Bao
    Li, Xin-Hai
    Wang, Xiao-Qiong
    Wang, Zhi-Xing
    Guo, Hua-Jun
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2006, 16 (07): : 1264 - 1268
  • [10] LiFePO4 Mesocrystals for Lithium-Ion Batteries
    Popovic, Jelena
    Demir-Cakan, Rezan
    Tornow, Julian
    Morcrette, Mathieu
    Su, Dang Sheng
    Schloegl, Robert
    Antonietti, Markus
    Titirici, Maria-Magdalena
    SMALL, 2011, 7 (08) : 1127 - 1135