Analytical qualitative modeling of passive and active metamaterials [Invited]

被引:5
作者
Chipouline, Arkadi [1 ]
Kueppers, Franko [1 ]
机构
[1] Tech Univ Darmstadt, Inst Microwave Engn & Photon, Merckstr 25, D-64283 Darmstadt, Germany
关键词
NEGATIVE-INDEX METAMATERIAL; SURFACE-PLASMON POLARITONS; QUANTUM-LIMITED LINEWIDTH; 2ND-HARMONIC GENERATION; STIMULATED-EMISSION; SPATIAL-DISPERSION; TOY MODEL; REFRACTION; SPASER; LIGHT;
D O I
10.1364/JOSAB.34.001597
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metamaterials (MMs) are artificial media tailoring the propagation of light by a design of a unit cell (meta-atom, MA). There is the evident inclination in favor of numerical methods in the description of the optical properties of MMs at the expense of physical intuition. It is shown that complementary to the numerical ones, qualitative models can provide a deeper understanding of the basic physical processes. The phenomenological approach to the homogenization resulted in three possible representations of Maxwell equations: Casimir, Landau-Lifshitz, and new toroidal ones. The multipole approach has been formulated and extended to the case of coupling between MAs, including random MA positioning. It has been shown that the quadrupole moment inherently introduces nonlinear (second-order) material response. The multipole approach has been applied for the case of the quantum MM to the coupled carbon nanotubes, and for the case of MAs to regular and stochastic properties of the nanolaser (spaser), and monochromatic plane wave propagation in the MM consisting of nanolasers. (C) 2017 Optical Society of America
引用
收藏
页码:1597 / 1623
页数:27
相关论文
共 50 条
[11]   [INVITED] Epsilon-near-zero metalenses operating in the visible Invited paper for the section : Hot topics in Metamaterials and Structures [J].
Pacheco-Pena, V. ;
Navarro-Cia, M. ;
Beruete, M. .
OPTICS AND LASER TECHNOLOGY, 2016, 80 :162-168
[12]   Negative-permeability electromagnetically induced transparent and magnetically active metamaterials [J].
Tsakmakidis, K. L. ;
Wartak, M. S. ;
Cook, J. J. H. ;
Hamm, J. M. ;
Hess, O. .
PHYSICAL REVIEW B, 2010, 81 (19)
[13]   Graphene-Based Active Random Metamaterials for Cavity-Free Lasing [J].
Marini, A. ;
Garcia de Abajo, F. J. .
PHYSICAL REVIEW LETTERS, 2016, 116 (21)
[14]   Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings [J].
Ma, Shaojie ;
Xiao, Shiyi ;
Zhou, Lei .
PHYSICAL REVIEW B, 2016, 93 (04)
[15]   Active formatting modulation of electromagnetically induced transparency in metamaterials [J].
Sun, Hao ;
Tang, Yuhua ;
Hu, Yuze ;
You, Jie ;
Liu, Hengzhu ;
Zheng, Xin .
CHINESE OPTICS LETTERS, 2020, 18 (09)
[16]   Analytical Modelling of Linear and Nonlinear Properties of Metamaterials Based on Multipole Expansion [J].
Petschulat, J. ;
Chipouline, A. ;
Pshenay-Severin, E. ;
Tuennermann, A. ;
Pertsch, T. ;
Menzel, C. ;
Rockstuhl, C. ;
Paul, T. ;
Lederer, F. .
METAMATERIALS IV, 2009, 7353
[17]   Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves [J].
Cui, Tie Jun .
JOURNAL OF OPTICS, 2017, 19 (08)
[18]   Gain and plasmon dynamics in active negative-index metamaterials [J].
Wuestner, Sebastian ;
Pusch, Andreas ;
Tsakmakidis, Kosmas L. ;
Hamm, Joachim M. ;
Hess, Ortwin .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1950) :3525-3550
[19]   Bound terahertz waves on meta-surfaces and active metamaterials [J].
Garcia-Pomar, J. -L. ;
Reinhard, B. ;
Neu, J. ;
Wollrab, V. ;
Paul, O. ;
Beigang, R. ;
Rahm, M. .
QUANTUM SENSING AND NANOPHOTONIC DEVICES VIII, 2011, 7945
[20]   A design of multi-band antenna based on active metamaterials [J].
Salhi, Ridha ;
Labidi, Mondher ;
Choubani, Fethi .
OPTICAL MATERIALS, 2018, 84 :307-311