Entanglement-based quantum communication secured by nonlocal dispersion cancellation

被引:72
作者
Lee, Catherine [1 ,2 ]
Zhang, Zheshen [1 ]
Steinbrecher, Gregory R. [1 ]
Zhou, Hongchao [1 ]
Mower, Jacob [1 ]
Zhong, Tian [1 ]
Wang, Ligong [1 ]
Hu, Xiaolong [1 ]
Horansky, Robert D. [3 ]
Verma, Varun B. [3 ]
Lita, Adriana E. [3 ]
Mirin, Richard P. [3 ]
Marsili, Francesco [4 ]
Shaw, Matthew D. [4 ]
Nam, Sae Woo [3 ]
Wornell, Gregory W. [1 ]
Wong, Franco N. C. [1 ]
Shapiro, Jeffrey H. [1 ]
Englund, Dirk [1 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Columbia Univ, Dept Phys, New York, NY 10027 USA
[3] NIST, Boulder, CO 80305 USA
[4] NASA, Jet Prop Lab, Pasadena, CA 91109 USA
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
关键词
KEY DISTRIBUTION; STATES; PHOTONS; CONVERSION; PROOF;
D O I
10.1103/PhysRevA.90.062331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum key distribution (QKD) enables participants to exchange secret information over long distances with unconditional security. However, the performance of today's QKD systems is subject to hardware limitations, such as those of available nonclassical-light sources and single-photon detectors. By encoding photons in high-dimensional states, the rate of generating secure information under these technical constraints can be maximized. Here, we demonstrate a complete time-energy entanglement-based QKD system with proven security against the broad class of arbitrary collective attacks. The security of the system is based on nonlocal dispersion cancellation between two time-energy entangled photons. This resource-efficient QKD system is implemented at telecommunications wavelength, is suitable for optical fiber and free-space links, and is compatible with wavelength-division multiplexing.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Large-alphabet quantum key distribution using energy-time entangled bipartite states [J].
Ali-Khan, Irfan ;
Broadbent, Curtis J. ;
Howell, John C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[2]  
[Anonymous], 1926, J AIEE
[3]   Quantum cryptography using larger alphabets [J].
Bechmann-Pasquinucci, H ;
Tittel, W .
PHYSICAL REVIEW A, 2000, 61 (06) :6
[4]   Cavity-enabled high-dimensional quantum key distribution [J].
Brougham, Thomas ;
Barnett, Stephen M. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (15)
[5]   Security of high-dimensional quantum key distribution protocols using Franson interferometers [J].
Brougham, Thomas ;
Barnett, Stephen M. ;
McCusker, Kevin T. ;
Kwiat, Paul G. ;
Gauthier, Daniel J. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)
[6]   Security of quantum key distribution using d-level systems -: art. no. 127902 [J].
Cerf, NJ ;
Bourennane, M ;
Karlsson, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-127902
[7]   Distillation of secret key and entanglement from quantum states [J].
Devetak, I ;
Winter, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :207-235
[8]   Quantum key distribution session with 16-dimensional photonic states [J].
Etcheverry, S. ;
Canas, G. ;
Gomez, E. S. ;
Nogueira, W. A. T. ;
Saavedra, C. ;
Xavier, G. B. ;
Lima, G. .
SCIENTIFIC REPORTS, 2013, 3
[9]   NONLOCAL CANCELLATION OF DISPERSION [J].
FRANSON, JD .
PHYSICAL REVIEW A, 1992, 45 (05) :3126-3132
[10]   Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks [J].
Furrer, F. ;
Franz, T. ;
Berta, M. ;
Leverrier, A. ;
Scholz, V. B. ;
Tomamichel, M. ;
Werner, R. F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)