Factors influencing the equilibrium grain size in equal-channel angular pressing: Role of Mg additions to aluminum

被引:300
作者
Iwahashi, Y [1 ]
Horita, Z
Nemoto, M
Langdon, TG
机构
[1] Mitsubishi Heavy Ind Ltd, Nagasaki Shipyard & Machinery Works, Nagasaki 85103, Japan
[2] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8128581, Japan
[3] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Engn Mech, Los Angeles, CA 90089 USA
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 1998年 / 29卷 / 10期
基金
日本学术振兴会; 美国国家科学基金会;
关键词
D O I
10.1007/s11661-998-0222-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experiments were undertaken to compare the equal-channel angular (ECA) pressing of Al-1 pet Mg and Al-3 pet Mg solid-solution alloys with pure Al. The results reveal both similarities and differences between these three materials. Bands of subgrains are formed in all three materials in a single passage through the die, and these subgrains subsequently evolve, on further pressings through the die, into an array of grains with high-angle boundaries. However, the addition of magnesium to an aluminum matrix decreases the rate of recovery and this leads, with an increasing Mg content, both to an increase in the number of pressings required to establish a homogeneous microstructure and to a decrease in the ultimate equiaxed equilibrium grain size. It is concluded that alloys exhibiting low rates of recovery should be especially attractive candidate materials for establishing ultrafine structures through grain refinement using the ECA pressing technique.
引用
收藏
页码:2503 / 2510
页数:8
相关论文
共 15 条
[1]   Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion [J].
Ferrasse, S ;
Segal, VM ;
Hartwig, KT ;
Goforth, RE .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1997, 28 (04) :1047-1057
[2]   Development of a submicrometer-grained microstructure in aluminum 6061 using equal channel angular extrusion [J].
Ferrasse, S ;
Segal, VM ;
Hartwig, KT ;
Goforth, RE .
JOURNAL OF MATERIALS RESEARCH, 1997, 12 (05) :1253-1261
[3]   Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size [J].
Furukawa, M ;
Horita, Z ;
Nemoto, M ;
Valiev, RZ ;
Langdon, TG .
ACTA MATERIALIA, 1996, 44 (11) :4619-4629
[4]   Structural evolution and the Hall-Petch relationship in an Al-Mg-Li-Zr alloy with ultra-fine grain size [J].
Furukawa, M ;
Iwahashi, Y ;
Horita, Z ;
Nemoto, M ;
Tsenev, NK ;
Valiev, RZ ;
Langdon, TG .
ACTA MATERIALIA, 1997, 45 (11) :4751-4757
[5]   Age hardening and the potential for superplasticity in a fine-grained Al-Mg-Li-Zr alloy [J].
Furukawa, M ;
Berbon, PB ;
Horita, Z ;
Nemoto, M ;
Tsenev, NK ;
Valiev, RZ ;
Langdon, TG .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1998, 29 (01) :169-177
[6]  
HATCH JE, 1984, ALUMINUM PROPERTIES, P231
[7]   An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy [J].
Horita, Z ;
Smith, DJ ;
Furukawa, M ;
Nemoto, M ;
Valiev, RZ ;
Langdon, TG .
JOURNAL OF MATERIALS RESEARCH, 1996, 11 (08) :1880-1890
[8]  
Humphreys F. J., 1995, RECRYSTALLIZATION RE, P333
[9]   The process of grain refinement in equal-channel angular pressing [J].
Iwahashi, Y ;
Horita, Z ;
Nemoto, M ;
Langdon, TG .
ACTA MATERIALIA, 1998, 46 (09) :3317-3331
[10]   Principle of equal-channel angular pressing for the processing of ultra-fine grained materials [J].
Iwahashi, Y ;
Wang, JT ;
Horita, Z ;
Nemoto, M ;
Langdon, TG .
SCRIPTA MATERIALIA, 1996, 35 (02) :143-146