Hand Gesture Recognition Using Compact CNN via Surface Electromyography Signals

被引:136
作者
Chen, Lin [1 ,2 ]
Fu, Jianting [1 ,2 ]
Wu, Yuheng [1 ,3 ]
Li, Haochen [1 ,2 ]
Zheng, Bin [1 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400700, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
[3] Changchun Univ Sci & Technol, Sch Mechatron Engn, Changchun 130022, Peoples R China
关键词
surface electromyography (sEMG); convolution neural networks (CNNs); hand gesture recognition; EMG;
D O I
10.3390/s20030672
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
By training the deep neural network model, the hidden features in Surface Electromyography(sEMG) signals can be extracted. The motion intention of the human can be predicted by analysis of sEMG. However, the models recently proposed by researchers often have a large number of parameters. Therefore, we designed a compact Convolution Neural Network (CNN) model, which not only improves the classification accuracy but also reduces the number of parameters in the model. Our proposed model was validated on the Ninapro DB5 Dataset and the Myo Dataset. The classification accuracy of gesture recognition achieved good results.
引用
收藏
页数:15
相关论文
共 27 条
[1]  
Allard UC, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P2464, DOI 10.1109/IROS.2016.7759384
[2]  
[Anonymous], 2014, Comput. Sci.
[3]  
[Anonymous], 2015, Tiny ImageNet Visual Recognition Challenge., DOI DOI 10.1109/ICCV.2015.123
[4]   Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands [J].
Atzori, Manfredo ;
Cognolato, Matteo ;
Mueller, Henning .
FRONTIERS IN NEUROROBOTICS, 2016, 10
[5]   Electromyography data for non-invasive naturally-controlled robotic hand prostheses [J].
Atzori, Manfredo ;
Gijsberts, Arjan ;
Castellini, Claudio ;
Caputo, Barbara ;
Hager, Anne-Gabrielle Mittaz ;
Elsig, Simone ;
Giatsidis, Giorgio ;
Bassetto, Franco ;
Muller, Henning .
SCIENTIFIC DATA, 2014, 1
[6]   Multi-subject/daily-life activity EMG-based control of mechanical hands [J].
Castellini, Claudio ;
Fiorilla, Angelo Emanuele ;
Sandini, Giulio .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2009, 6
[7]   Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning [J].
Cote-Allard, Ulysse ;
Fall, Cheikh Latyr ;
Drouin, Alexandre ;
Campeau-Lecours, Alexandre ;
Gosselin, Clement ;
Glette, Kyrre ;
Laviolette, Francois ;
Gosselin, Benoit .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (04) :760-771
[8]  
Côté-Allard U, 2017, IEEE SYS MAN CYBERN, P1663, DOI 10.1109/SMC.2017.8122854
[9]   Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation [J].
Du, Yu ;
Jin, Wenguang ;
Wei, Wentao ;
Hu, Yu ;
Geng, Weidong .
SENSORS, 2017, 17 (03)
[10]   A robust, real-time control scheme for multifunction myoelectric control [J].
Englehart, K ;
Hudgins, B .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (07) :848-854