Stability analysis of the fractional-order prey-predator model with infection

被引:24
作者
Ramesh, Perumal [1 ]
Sambath, Muniyagounder [1 ]
Mohd, Mohd Hafiz [2 ]
Balachandran, Krishnan [3 ]
机构
[1] Periyar Univ, Dept Math, Salem 636011, Tamil Nadu, India
[2] Univ Sains Malaysia, Sch Math Sci, George Town, Malaysia
[3] Bharathiar Univ, Dept Math, Coimbatore, Tamil Nadu, India
关键词
Boundedness; existence and uniqueness; solutions; fractional dynamical system; stability; prey-predator model; SYNCHRONIZATION; DYNAMICS; DISEASE;
D O I
10.1080/02286203.2020.1783131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose a fractional-order prey-predator model with infection on both populations. First, we prove some important results such as existence, uniqueness, non-negativity and boundedness of the solutions of the fractional-order dynamical system. Next, we discuss the local stability and global stability of the fractional-order prey-predator model. Numerical simulations are presented with several examples.
引用
收藏
页码:434 / 450
页数:17
相关论文
共 41 条
[1]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[2]   Stability and bifurcation analysis for a fractional prey-predator scavenger model [J].
Alidousti, Javad .
APPLIED MATHEMATICAL MODELLING, 2020, 81 :342-355
[3]   The solution of fractional order epidemic model by implicit Adams methods [J].
Ameen, I. ;
Novati, P. .
APPLIED MATHEMATICAL MODELLING, 2017, 43 :78-84
[4]  
Ben Adda F, 1997, J. Fract. Calcul, V11, P21
[5]   Multi-switching combination synchronization of different fractional-order non-linear dynamical systems [J].
Bhat, Muzaffar Ahmad ;
Khan, Ayub .
INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2018, 38 (04) :254-261
[6]  
Biswas M, 2016, Int J Adv Appl Math Mech, V3, P114
[7]   Variational calculus involving nonlocal fractional derivative with Mittag-Leffler kernel [J].
Chatibi, Y. ;
El Kinani, E. H. ;
Ouhadan, A. .
CHAOS SOLITONS & FRACTALS, 2019, 118 :117-121
[8]   Lie symmetry analysis and conservation laws for the time fractional Black-Scholes equation [J].
Chatibi, Youness ;
El Kinani, El Hassan ;
Ouhadan, Abdelaziz .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (01)
[9]   On the discrete symmetry analysis of some classical and fractional differential equations [J].
Chatibi, Youness ;
El Kinani, El Hassan ;
Ouhadan, Abdelaziz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) :2868-2878
[10]   A predator-prey model with disease in the prey [J].
Chattopadhyay, J ;
Arino, O .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) :747-766