Coupling a Regional Climate Model and a Distributed Hydrological Model to Assess Future Water Resources in Jinhua River Basin, East China

被引:21
|
作者
Xu, Yue-Ping [1 ]
Gao, Xichao [1 ]
Zhu, Qian [1 ]
Zhang, Yongqiang [1 ]
Kang, Lili [2 ]
机构
[1] Zhejiang Univ, Dept Hydraul Engn, Civil Engn Coll, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Inst Meteorol Sci, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate change; Regional climate model; DHSVM; Bias correction; Jinhua River Basin; CHANGE IMPACTS; DOWNSCALING METHODS; VEGETATION MODEL; BIAS CORRECTION; UNCERTAINTY; PRECIPITATION; CALIBRATION; PROJECTIONS; SCENARIOS; FLOOD;
D O I
10.1061/(ASCE)HE.1943-5584.0001007
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Investigating the impact of climate change at regional scales is of importance for adaption purposes. In this study, a regional climate model PRECIS is for the first time run for East China on a spatial resolution of 25 km using two global climate models (GCMs) ECHAM5 and HadCM3 as boundary data under A1B emission scenario. The baseline period is 1961-1990. An upgraded quantile mapping method is used to correct the bias of PRECIS outputs for providing reliable future climate change projections (2011-2040). The regional climate model is then coupled with a mesoscale distributed hydrology soil vegetation model (DHSVM), to investigate the impact of climate change on future water resources in the Jinhua River Basin, East China. The hydrological model is calibrated and validated on a daily basis and show reasonable performance. The results show that under both GCMs, statistically, no significant changes in future annual runoff are projected. However, large changes in seasonal and monthly runoff are projected. ECHAM5 projects large decreases in summer (-11.8%) and autumn (-54.7%) and slight increases in spring and winter whereas HadCM3 projects large decreases in autumn (-65%) and large increases in spring (28.7%) and winter (60%). The seasonal changes in precipitation in this region are the main driving force for the changes in future runoff. (C) 2014 American Society of Civil Engineers.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China
    Pan, Suli
    Fu, Guangtao
    Chiang, Yen-Ming
    Ran, Qihua
    Xu, Yue-Ping
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2017, 62 (15): : 2511 - 2530
  • [2] Quantifying the Impact of Future Climate Change on Runoff in the Amur River Basin Using a Distributed Hydrological Model and CMIP6 GCM Projections
    Wen, Ke
    Gao, Bing
    Li, Mingliang
    ATMOSPHERE, 2021, 12 (12)
  • [3] Combined effects of predicted climate and land use changes on future hydrological droughts in the Luanhe River basin, China
    Chen, Xu
    Han, Ruiguang
    Feng, Ping
    Wang, Yongjie
    NATURAL HAZARDS, 2022, 110 (02) : 1305 - 1337
  • [4] Uni- and multivariate bias adjustment of climate model simulations in Nordic catchments: Effects on hydrological signatures relevant for water resources management in a changing climate
    Tootoonchi, Faranak
    Todorovic, Andrijana
    Grabs, Thomas
    Teutschbein, Claudia
    JOURNAL OF HYDROLOGY, 2023, 623
  • [5] Multi-Model Ensemble Approaches to Assessment of Effects of Local Climate Change on Water Resources of the Hotan River Basin in Xinjiang, China
    Luo, Min
    Meng, Fanhao
    Liu, Tie
    Duan, Yongchao
    Frankl, Amaury
    Kurban, Alishir
    De Maeyer, Philippe
    WATER, 2017, 9 (08)
  • [6] An integrated Hydrological Model for Assessing Climate Change Impacts on Water Resources of the Upper Po River Basin
    Ravazzani, Giovanni
    Barbero, Secondo
    Salandin, Alessio
    Senatore, Alfonso
    Mancini, Marco
    WATER RESOURCES MANAGEMENT, 2015, 29 (04) : 1193 - 1215
  • [7] Projection of future streamflow of the Hunza River Basin, Karakoram Range (Pakistan) using HBV hydrological model
    Ali, Ayaz Fateh
    Xiao Cun-de
    Zhang Xiao-peng
    Adnan, Muhammad
    Iqbal, Mudassar
    Khan, Garee
    JOURNAL OF MOUNTAIN SCIENCE, 2018, 15 (10) : 2218 - 2235
  • [8] Impact of Climate Change on the Hydrology of Upper Tiber River Basin Using Bias Corrected Regional Climate Model
    Fiseha, B. M.
    Setegn, S. G.
    Melesse, A. M.
    Volpi, E.
    Fiori, A.
    WATER RESOURCES MANAGEMENT, 2014, 28 (05) : 1327 - 1343
  • [9] An integrated Hydrological Model for Assessing Climate Change Impacts on Water Resources of the Upper Po River Basin
    Giovanni Ravazzani
    Secondo Barbero
    Alessio Salandin
    Alfonso Senatore
    Marco Mancini
    Water Resources Management, 2015, 29 : 1193 - 1215
  • [10] Water resources of the Desna river basin under future climate
    Valeriy, Osypov
    Oleh, Speka
    Anastasiia, Chyhareva
    Nataliia, Osadcha
    Svitlana, Krakovska
    Volodymyr, Osadchyi
    JOURNAL OF WATER AND CLIMATE CHANGE, 2021, 12 (07) : 3355 - 3372