Robust Power System State Estimation Using t-Distribution Noise Model

被引:30
作者
Chen, Tengpeng [1 ]
Sun, Lu [2 ]
Ling, Keck-Voon [3 ]
Ho, Weng Khuen [2 ]
机构
[1] Xiamen Univ, Dept Instrumental & Elect Engn, Xiamen 361102, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
来源
IEEE SYSTEMS JOURNAL | 2020年 / 14卷 / 01期
基金
新加坡国家研究基金会;
关键词
Influence function (IF); maximum likelihood estimation (MLE); robust state estimation; t-distribution;
D O I
10.1109/JSYST.2018.2890106
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an optimal robust state estimator using maximum likelihood optimization with the t-distribution noise model. In robust statistics literature, the t-distribution is used to model Gaussian and non-Gaussian statistics. The influence function, an analytical tool in robust statistics, is employed to obtain the solution to the resulting maximum likelihood estimation optimization problem, so that the proposed estimator can be implemented within the framework of traditional robust estimators. Numerical results obtained from simulations of the IEEE 14-bus system, IEEE 118-bus system, and experiment on a micro-grid demonstrated the effectiveness and robustness of the proposed estimator. The proposed estimator could suppress the influence of outliers with smaller average mean-squared errors (AMSE) than the traditional robust estimators, such as quadratic-linear, square-root, Schweppe-Huber generalized-M, multiple-segment, and least absolute value estimators. A new approximate AMSE formula is also derived for the proposed estimator to predict and evaluate its precision.
引用
收藏
页码:771 / 781
页数:11
相关论文
共 34 条
[1]  
Abur A., 2004, Power System State Estimation Theory and Implementation
[2]  
Ahmad M, 2013, POWER SYSTEM STATE ESTIMATION, P1
[3]  
[Anonymous], 1994, Outliers in statistical data
[4]  
[Anonymous], 2009, Wiley Series in Probability and Statistics, DOI DOI 10.1002/9780470434697.CH7
[5]   Implementing nonquadratic objective functions for state estimation and bad data rejection [J].
Baldick, R ;
Clements, KA ;
PinjoDzigal, Z ;
Davis, PW .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (01) :376-382
[6]  
Bian D., 2015, 2015 IEEE Power & Energy Society General Meeting, P1, DOI 10.1109/PESGM.2015.7286238
[7]   Robust State Estimator Based on Maximum Exponential Absolute Value [J].
Chen, Yanbo ;
Ma, Jin ;
Zhang, Pu ;
Liu, Feng ;
Mei, Shengwei .
IEEE TRANSACTIONS ON SMART GRID, 2017, 8 (04) :1537-1544
[8]   A Robust WLAV State Estimation Using Optimal Transformations [J].
Chen, Yanbo ;
Liu, Feng ;
Mei, Shengwei ;
Ma, Jin .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (04) :2190-2191
[9]  
Dabbagchi I., 1993, TECH REP
[10]   On the Use of Real-Time Simulation Technology in Smart Grid Research and Development [J].
Dufour, Christian ;
Belanger, Jean .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2014, 50 (06) :3963-3970