Stability and Incremental Improvement of Suboptimal MPC Without Terminal Constraints

被引:103
作者
Graichen, Knut [1 ]
Kugi, Andreas [2 ]
机构
[1] Univ Ulm, Inst Measurement Control & Microtechnol, D-89069 Ulm, Germany
[2] Vienna Univ Technol, Automat & Control Inst, A-1040 Vienna, Austria
关键词
Control Lyapunov function (CLF); model predictive control (MPC); optimal control problem (OCP); MODEL-PREDICTIVE CONTROL; RECEDING-HORIZON CONTROL; NONLINEAR-SYSTEMS; FRAMEWORK; SCHEME;
D O I
10.1109/TAC.2010.2057912
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The stability of suboptimal model predictive control (MPC) without terminal constraints is investigated for continuous-time nonlinear systems under input constraints. Exponential stability and decay of the optimization error are guaranteed if the number of optimization steps in each sampling instant satisfies a lower bound that depends on the convergence ratio of the underlying optimization algorithm. The decay of the optimization error shows the incremental improvement of the suboptimal MPC scheme.
引用
收藏
页码:2576 / 2580
页数:5
相关论文
共 25 条
[1]  
Allgower F., 1999, Advances in Control. Highlights of ECC'99, P391
[2]   ON RECEDING HORIZON FEEDBACK-CONTROL [J].
CHEN, CC ;
SHAW, L .
AUTOMATICA, 1982, 18 (03) :349-352
[3]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[4]   A real-time framework for model-predictive control of continuous-time nonlinear systems [J].
DeHaan, Darryl ;
Guay, Martin .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (11) :2047-2057
[5]  
Diehl M, 2005, IEE P-CONTR THEOR AP, V152, P296, DOI 10.1049/ip-cta:20040008
[6]  
Diehl M, 2009, LECT NOTES CONTR INF, V384, P391, DOI 10.1007/978-3-642-01094-1_32
[7]   On L(2) sufficient conditions and the gradient projection method for optimal control problems [J].
Dunn, JC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (04) :1270-1290
[8]   A general framework to design stabilizing nonlinear model predictive controllers [J].
Fontes, FACC .
SYSTEMS & CONTROL LETTERS, 2001, 42 (02) :127-143
[9]   A NOTE ON A FUNCTIONAL INEQUALITY [J].
GOLLWITZER, HE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (03) :642-+
[10]  
Graichen K., 2010, IFAC P, V43, P397