Hidden exceptional symmetry in the pure spinor superstring

被引:7
作者
Eager, R. [1 ,4 ]
Lockhart, G. [2 ]
Sharpe, E. [3 ,5 ]
机构
[1] Kishine Koen, Yokohama, Kanagawa 2220034, Japan
[2] Univ Amsterdam, Inst Theoret Phys, NL-1098 XH Amsterdam, Netherlands
[3] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[4] Korea Inst Adv Study, Sch Phys, Seoul 02455, South Korea
[5] CERN, Theory Dept, CH-1211 Geneva, Switzerland
基金
欧洲研究理事会;
关键词
ELLIPTIC GENERA; REPRESENTATIONS; ALGEBRAS; GEOMETRY; ORBIT; E(6);
D O I
10.1103/PhysRevD.101.026006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The pure spinor formulation of superstring theory includes an interacting sector of central charge c(lambda) = 22, which can be realized as a curved beta gamma system on the cone over the orthogonal Grassmannian OG(+) (5,10). We find that the spectrum of the beta gamma system organizes into representations of the g = e(6) affine algebra at level -3, whose so(10)(-3) circle plus u(1)(-4) subalgebra encodes the rotational and ghost symmetries of the system. As a consequence, the pure spinor partition function decomposes as a sum of affine e(6) characters. We interpret this as an instance of a more general pattern of enhancements in curved beta gamma systems, which also includes the cases g = so(8) and e(7), corresponding to target spaces that are cones over the complex Grassmannian Gr(2, 4) and the complex Cayley plane OP2. We identify these curved beta gamma systems with the chiral algebras of certain two-dimensional (2D) (0,2) conformal field theories arising from twisted compactification of 4D N = 2 superconformal field theories on S-2.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Hilbert space of curved βγ systems on quadric cones [J].
Aisaka, Yuri ;
Arroyo, E. Aldo .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (08)
[2]   Pure spinor partition function and the massive superstring spectrum [J].
Aisaka, Yuri ;
Arroyo, E. Aldo ;
Berkovits, Nathan .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (08)
[3]  
[Anonymous], 2000, J HIGH ENERGY PHYS
[4]  
[Anonymous], ARXIVHEPTH0511008
[5]  
Arakawa T., ARXIV161005865
[6]   JOSEPH IDEALS AND LISSE MINIMAL W-ALGEBRAS [J].
Arakawa, Tomoyuki ;
Moreau, Anne .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2018, 17 (02) :397-417
[7]   Vertex operator algebras, Higgs branches, and modular differential equations [J].
Beem, Christopher ;
Rastelli, Leonardo .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08)
[8]   Infinite Chiral Symmetry in Four Dimensions [J].
Beem, Christopher ;
Lemos, Madalena ;
Liendo, Pedro ;
Peelaers, Wolfger ;
Rastelli, Leonardo ;
van Rees, Balt C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (03) :1359-1433
[9]  
BEILINSON A, 2004, AM MATH SOC C PUBLIC, V51
[10]  
Benini F, 2015, COMMUN MATH PHYS, V333, P1241, DOI 10.1007/s00220-014-2210-y