Multiphonon scattering and non-radiative decay in ZnO nanoparticles

被引:15
作者
Senthilkumar, K. [1 ]
Tokunaga, M. [1 ]
Okamoto, H. [1 ]
Senthilkumar, O. [2 ]
Lin, J. [3 ]
Urban, B. [3 ]
Neogi, A. [3 ]
Fujita, Y. [1 ]
机构
[1] Shimane Univ, Interdisciplinary Fac Sci & Engn, Matsue, Shimane 6908504, Japan
[2] Shimane Univ, Res Project Promot Inst, Matsue, Shimane 6908504, Japan
[3] Univ North Texas, Dept Phys, Denton, TX 76203 USA
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 6 | 2010年 / 7卷 / 06期
关键词
ZnO nanoparticles; phonons; defect levels; time-resolved photoluminescence; Raman spectra; EMISSION;
D O I
10.1002/pssc.200983203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
ZnO nanoparticles were prepared using a simple evaporation technique at pressures of 75 and 760 torr. A wide visible emission was recorded from both samples using photoluminescence spectroscopy. The presence of green emission at 530 nm is due to deep level defects of vacant zinc V-Zn, and/or their complexes in the ZnO band gap. The fundamental optical phonon modes were identified in addition to multiphonon combination of optical and acoustical overtones and nitrogen related local vibrational modes using Raman backscattering. The existence of multiphonons induces the non-radiative processes. The life time of both the radiative and non-radiative processes is discussed using time resolved photoluminescence spectroscopic results. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1586 / 1588
页数:3
相关论文
共 15 条
[1]   Identification of oxygen and zinc vacancy optical signals in ZnO [J].
Borseth, T. Moe ;
Svensson, B. G. ;
Kuznetsov, A. Yu. ;
Klason, P. ;
Zhao, Q. X. ;
Willander, M. .
APPLIED PHYSICS LETTERS, 2006, 89 (26)
[2]   Temperature dependence of raman scattering in ZnO [J].
Cusco, Ramon ;
Alarcon-Llado, Esther ;
Ibanez, Jordi ;
Artus, Luis ;
Jimenez, Juan ;
Wang, Buguo ;
Callahan, Michael J. .
PHYSICAL REVIEW B, 2007, 75 (16)
[3]   LUMINESCENT TRANSITIONS ASSOCIATED WITH DIVALENT COPPER IMPURITIES AND GREEN EMISSION FROM SEMICONDUCTING ZINC OXIDE [J].
DINGLE, R .
PHYSICAL REVIEW LETTERS, 1969, 23 (11) :579-&
[4]   Further characterization of oxygen vacancies and zinc vacancies in electron-irradiated ZnO [J].
Evans, S. M. ;
Giles, N. C. ;
Halliburton, L. E. ;
Kappers, L. A. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (04)
[5]   AIGaInP light-emitting diodes with omni-directionally reflecting submount [J].
Gessmann, T ;
Schubert, EF ;
Graff, JW ;
Streubel, K .
LIGHT-EMITTING DIODES: RESEARCH, MANUFACTURING, AND APPLICATIONS VII, 2003, 4996 :26-39
[6]   High-energy vibrational modes in nitrogen-doped ZnO [J].
Haboeck, U ;
Hoffmann, A ;
Thomsen, C ;
Zeuner, A ;
Meyer, BK .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (03) :R21-R23
[7]   First-principles study of native point defects in ZnO [J].
Kohan, AF ;
Ceder, G ;
Morgan, D ;
Van de Walle, CG .
PHYSICAL REVIEW B, 2000, 61 (22) :15019-15027
[8]   Multiphonon processes in ZnO [J].
Kunert, HW ;
Brink, DJ ;
Auret, FD ;
Malherbe, J ;
Barnas, J ;
Kononenko, V .
E-MRS 2004 Fall Meeting Symposia C and F, 2005, 2 (03) :1131-1136
[9]   Substitutional diatomic molecules NO, NC, CO, N2, and O2:: Their vibrational frequencies and effects on p doping of ZnO -: art. no. 211910 [J].
Limpijumnong, S ;
Li, XN ;
Wei, SH ;
Zhang, SB .
APPLIED PHYSICS LETTERS, 2005, 86 (21) :1-3
[10]   In situ synthesizing molecular materials between coplanar gold microgap electrodes for the fabrication of molecular devices [J].
Liu, Yaling ;
Ji, Zhuoyu ;
Li, Hongxiang ;
Hu, Wenping ;
Zhu, Daoben .
APPLIED PHYSICS LETTERS, 2008, 92 (02)