The sharp bound of the third Hankel determinant for functions of bounded turning

被引:18
作者
Kowalczyk, Bogumila [1 ]
Lecko, Adam [1 ]
机构
[1] Univ Warmia & Mazury, Dept Complex Anal, Fac Math & Comp Sci, Ul Sloneczna 54, PL-10710 Olsztyn, Poland
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2021年 / 27卷 / 03期
关键词
Univalent function; Function of bounded turning; Hankel determinant; Caratheodory function; Coefficient; COEFFICIENTS; INVERSE;
D O I
10.1007/s40590-021-00383-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find the sharp bound for the third Hankel determinant H-3,H-1(f) :=vertical bar a(1) a(2) a(3) a(2) a(3) a(4) a(3) a(4) a(5)vertical bar for analytic functions f with a(n) := f((n))(0)=n!, n is an element of N, a(1) := 1, such that Ref'(z) > 0, z is an element of D := {z is an element of C : vertical bar z vertical bar , 1}.
引用
收藏
页数:13
相关论文
共 24 条
  • [1] Functions which map the interior of the unit circle upon simple regions.
    Alexander, JW
    [J]. ANNALS OF MATHEMATICS, 1915, 17 : 12 - 22
  • [2] Babalola KO, 2010, INEQUAL THEORY APPL, P1
  • [3] The variability range of the coefficients of the power series, which do not reach a given value
    Caratheodory, C
    [J]. MATHEMATISCHE ANNALEN, 1907, 64 : 95 - 115
  • [4] CARLITZ L, 1954, Tohoku Math. J., V5, P272
  • [5] The Bounds of Some Determinants for Starlike Functions of Order Alpha
    Cho, N. E.
    Kowalczyk, B.
    Kwon, O. S.
    Lecko, A.
    Sim, Y. J.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 523 - 535
  • [6] Goodman A. W., 1983, UNIVALENT FUNCTIONS
  • [7] HAYMAN WK, 1968, P LOND MATH SOC, V18, P77
  • [8] Janteng A., 2015, J KOREAN MATH SOC, V52, P1
  • [9] Janteng S.A., 2006, J.Inequal. Pure Appl.Math., V7, P1
  • [10] Kanas A., 1990, FOLIA SCI U TECH RES, V73, P49