The sharp bound of the third Hankel determinant for functions of bounded turning

被引:22
作者
Kowalczyk, Bogumila [1 ]
Lecko, Adam [1 ]
机构
[1] Univ Warmia & Mazury, Dept Complex Anal, Fac Math & Comp Sci, Ul Sloneczna 54, PL-10710 Olsztyn, Poland
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2021年 / 27卷 / 03期
关键词
Univalent function; Function of bounded turning; Hankel determinant; Caratheodory function; Coefficient; COEFFICIENTS; INVERSE;
D O I
10.1007/s40590-021-00383-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find the sharp bound for the third Hankel determinant H-3,H-1(f) :=vertical bar a(1) a(2) a(3) a(2) a(3) a(4) a(3) a(4) a(5)vertical bar for analytic functions f with a(n) := f((n))(0)=n!, n is an element of N, a(1) := 1, such that Ref'(z) > 0, z is an element of D := {z is an element of C : vertical bar z vertical bar , 1}.
引用
收藏
页数:13
相关论文
共 24 条
[1]   Functions which map the interior of the unit circle upon simple regions. [J].
Alexander, JW .
ANNALS OF MATHEMATICS, 1915, 17 :12-22
[2]  
Babalola KO, 2010, INEQUAL THEORY APPL, P1
[3]   The variability range of the coefficients of the power series, which do not reach a given value [J].
Caratheodory, C .
MATHEMATISCHE ANNALEN, 1907, 64 :95-115
[4]  
CARLITZ L., 1954, TOHOKU MATH J, V5, P272
[5]   The Bounds of Some Determinants for Starlike Functions of Order Alpha [J].
Cho, N. E. ;
Kowalczyk, B. ;
Kwon, O. S. ;
Lecko, A. ;
Sim, Y. J. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) :523-535
[6]  
Goodman AW., 1983, Univalent Functions
[7]  
HAYMAN WK, 1968, P LOND MATH SOC, V18, P77
[8]  
Janteng A., 2015, J KOREAN MATH SOC, V52, P1
[9]  
Janteng A., 2006, Journal of Inequalities in Pure & Applied Mathematics, V7, P1
[10]  
Kanas A., 1990, FOLIA SCI U TECH RES, V73, P49