Cloning and expression analysis of candidate genes involved in wax deposition along the growing barley (Hordeum vulgare) leaf

被引:39
作者
Richardson, Andrew
Boscari, Alexandre
Schreiber, Lukas
Kerstiens, Gerhard
Jarvis, Mike
Herzyk, Pawel
Fricke, Wieland [1 ]
机构
[1] Univ Paisley, Div Biol Sci, Paisley PA1 2BE, Renfrew, Scotland
[2] Univ Bonn, Dept Ecophysiol, IZMB, D-53115 Bonn, Germany
[3] Univ Glasgow, Dept Chem, Glasgow G12 8QQ, Lanark, Scotland
[4] Univ Glasgow, Inst Biomed & Life Sci, Sir Henry Wellcome Funct Genom Facil, Glasgow G12 8QQ, Lanark, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
cuticle; epidermal cell development; Hordeum; leaf growth; microarray; very long chain fatty acid elongation; wax;
D O I
10.1007/s00425-007-0585-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The aim of the present study was to isolate clones of genes which are likely to be involved in wax deposition on barley leaves. Of particular interest were those genes which encode proteins that take part in the synthesis and further modification of very long chain fatty acids (VLCFAs), the precursors of waxes. Previously, it had been shown that wax deposition commences within a spatially well-defined developmental zone along the growing barley leaf (Richardson et al. in Planta 222:472-483, 2005). In the present study, a barley microarray approach was used to screen for candidate contig-sequences (www.barleybase.org) that are expressed particularly in those leaf zones where wax deposition occurs and which are expressed specifically within the epidermis, the site of wax synthesis. Candidate contigs were used to screen an established in-house cDNA library of barley. Six full-length coding sequences clones were isolated. Based on sequence homologies, three clones were related to Arabidopsis CER6/CUT1, and these clones were termed HvCUT1;1, HvCUT1;2 and HvCUT1;3. A fourth clone, which was related to Arabidopsis Fiddlehead (FDH), was termed HvFDH1;1. These clones are likely to be involved in synthesis of VLCFAs. A fifth and sixth clone were related to Arabidopsis CER1, and were termed HvCER1;1 and HvCER1;2. These clones are likely to be involved in the decarbonylation pathway of VLCFAs. Semi-quantitative RT-PCR confirmed microarray expression data. In addition, expression analyses at 10-mm resolution along the blade suggest that HvCUT1;1 (and possibly HvCUT1;2) and HvCER1;1 are involved in commencement of wax deposition during barley leaf epidermal cell development.
引用
收藏
页码:1459 / 1473
页数:15
相关论文
共 57 条
[1]   Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility [J].
Aarts, MGM ;
Keijzer, CJ ;
Stiekema, WJ ;
Pereira, A .
PLANT CELL, 1995, 7 (12) :2115-2127
[2]   The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L) leaf surfaces [J].
Barnes, JD ;
Percy, KE ;
Paul, ND ;
Jones, P ;
McLaughlin, CK ;
Mullineaux, PM ;
Creissen, G ;
Wellburn, AR .
JOURNAL OF EXPERIMENTAL BOTANY, 1996, 47 (294) :99-109
[3]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[4]   Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments [J].
Breitling, R ;
Armengaud, P ;
Amtmann, A ;
Herzyk, P .
FEBS LETTERS, 2004, 573 (1-3) :83-92
[5]   Iterative Group Analysis (iGA): A simple tool to enhance sensitivity and facilitate interpretation of microarray experiments [J].
Breitling, R ;
Amtmann, A ;
Herzyk, P .
BMC BIOINFORMATICS, 2004, 5 (1)
[6]  
Breitling Rainer, 2005, Journal of Bioinformatics and Computational Biology, V3, P1171, DOI 10.1142/S0219720005001442
[7]  
Broadwater JA, 1998, FETT-LIPID, V100, P103
[8]   A UV-B-specific signaling component orchestrates plant UV protection [J].
Brown, BA ;
Cloix, C ;
Jiang, GH ;
Kaiserli, E ;
Herzyk, P ;
Kliebenstein, DJ ;
Jenkins, GI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (50) :18225-18230
[9]   Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production [J].
Chen, XB ;
Goodwin, SM ;
Boroff, VL ;
Liu, XL ;
Jenks, MA .
PLANT CELL, 2003, 15 (05) :1170-1185
[10]   A new resource for cereal genomics: 22K barley GeneChip comes of age [J].
Close, TJ ;
Wanamaker, SI ;
Caldo, RA ;
Turner, SM ;
Ashlock, DA ;
Dickerson, JA ;
Wing, RA ;
Muehlbauer, GJ ;
Kleinhofs, A ;
Wise, RP .
PLANT PHYSIOLOGY, 2004, 134 (03) :960-968