Twisted Logarithmic Modules of Vertex Algebras

被引:15
作者
Bakalov, Bojko [1 ]
机构
[1] N Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
关键词
BASIC REPRESENTATIONS; QUANTUM COHOMOLOGY; AFFINE;
D O I
10.1007/s00220-015-2503-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by logarithmic conformal field theory and Gromov-Witten theory, we introduce a notion of a twisted module of a vertex algebra under an arbitrary (not necessarily semisimple) automorphism. Its main feature is that the twisted fields involve the logarithm of the formal variable. We develop the theory of such twisted modules and, in particular, derive a Borcherds identity and commutator formula for them. We investigate in detail the examples of affine and Heisenberg vertex algebras.
引用
收藏
页码:355 / 383
页数:29
相关论文
共 44 条
[1]   Vertex operator (super)algebras and LCFT [J].
Adamovic, Drazen ;
Milas, Antun .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (49)
[2]  
[Anonymous], 1991, Contemporary Mathematics
[3]  
[Anonymous], PREPRINT
[4]  
[Anonymous], SEMISIMPLE FRO UNPUB
[5]  
[Anonymous], 1993, PROGR MATH
[6]  
[Anonymous], 2006, LIE THEORY ITS APPL
[7]  
[Anonymous], 1959, THEORY MATRICES
[8]  
[Anonymous], J PHYS A
[9]  
[Anonymous], 2004, PROGR MATH
[10]  
[Anonymous], 1998, AM MATH SOC