Electronic properties and high-pressure behavior of wolframite-type CoWO4

被引:20
作者
Bandiello, Enrico [1 ]
Rodriguez-Hernandez, Placida [2 ]
Munoz, Alfonso [2 ]
Buenestado, Manuel Bajo [1 ]
Popescu, Catalin [3 ]
Errandonea, Daniel [1 ]
机构
[1] Univ Valencia, Edificio Invest, MALTA Consolider Team, Dept Fis Aplicada ICMUV, Edificio Invest,C Dr Moliner 50, Burjassot 46100, Spain
[2] Univ La Laguna, MALTA Consolider Team, Inst Mat & Nanotecnol, Dept Fis, E-38205 Tenerife, Spain
[3] CELLS ALBA Synchrotron Light Facil, Barcelona 08290, Spain
来源
MATERIALS ADVANCES | 2021年 / 2卷 / 18期
关键词
X-RAY-DIFFRACTION; ELASTIC PROPERTIES; 1ST-PRINCIPLES; ZNWO4; CRYSTAL; PHOTOCATALYSTS; PERFORMANCE; TUNGSTATES; GENERATION; STABILITY;
D O I
10.1039/d1ma00510c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we characterize wolframite-type CoWO4 under ambient conditions and under compression up to 10 GPa, with emphasis on its electronic structure. X-Ray diffraction and vibrational experiments, supported by ab initio calculations, show that CoWO4 is stable under high-pressure conditions, as no structural changes are detected in the studied pressure range. Interesting findings come from optical absorption spectroscopy. On the one hand, CoWO4 is confirmed to have one of the lowest band gaps among similar wolframites, around 2.25 eV. This makes CoWO4 suitable for use in applications such as the photocatalysis of organic pollutants and water splitting. Additionally, a monotonic decrease of the band gap is found upon compression. This phenomenon is seldom observed in AWO(4) wolframites and is attributed to the open character of the d shell of Co2+. Our results are supported by theoretical ab initio simulations and are discussed with reference to other wolframites.
引用
收藏
页码:5955 / 5966
页数:12
相关论文
共 69 条
  • [1] Improved photoelectrochemical water oxidation under visible light with mesoporous CoWO4
    Ahmed, M. I.
    Adam, A.
    Khan, A.
    Rehman, A. U.
    Qamaruddin, M.
    Siddiqui, M. N.
    Qamar, M.
    [J]. MATERIALS LETTERS, 2016, 183 : 281 - 284
  • [2] Electronic structure and magnetic properties of FeWO4 nanocrystals synthesized by the microwave-hydrothermal method
    Almeida, M. A. P.
    Cavalcante, L. S.
    Morilla-Santos, C.
    Lisboa Filho, P. N.
    Beltran, A.
    Andres, J.
    Gracia, L.
    Longo, E.
    [J]. MATERIALS CHARACTERIZATION, 2012, 73 : 124 - 129
  • [3] Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR)
    AlShehri, Saad M.
    Ahmed, Jahangeer
    Ahamad, Tansir
    Arunachalam, Prabhakarn
    Ahmad, Tokeer
    Khan, Aslam
    [J]. RSC ADVANCES, 2017, 7 (72) : 45615 - 45623
  • [4] Green synthesis of CoWO4 powders using agar-agar from red seaweed (Rhodophyta): Structure, magnetic properties and battery-like behavior
    Azevedo, Heytor V. S. B.
    Raimundo, Rafael A.
    Ferreira, Luciena S.
    Silva, Maite M. S.
    Morales, Marco A.
    Macedo, Daniel A.
    Gomes, Uflame U.
    Cavalcante, Danielle G. L.
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2020, 242
  • [5] ON ELECTRICAL TRANSPORT IN COWO4 SINGLE-CRYSTALS
    BHARATI, R
    SINGH, RA
    WANKLYN, BM
    [J]. JOURNAL OF MATERIALS SCIENCE, 1981, 16 (03) : 775 - 779
  • [6] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [7] First-principles calculations of the structural, electronic and elastic properties of ZnWO4 and CdWO4 single crystals at the ambient and elevated pressure
    Brik, M. G.
    Nagirnyi, V.
    Kirm, M.
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2013, 137 (03) : 977 - 983
  • [8] 1ST-PRINCIPLES CALCULATION OF THE ELASTIC-CONSTANTS OF ALAS
    CHETTY, N
    MUNOZ, A
    MARTIN, RM
    [J]. PHYSICAL REVIEW B, 1989, 40 (17): : 11934 - 11936
  • [10] PASCal: a principal axis strain calculator for thermal expansion and compressibility determination
    Cliffe, Matthew J.
    Goodwin, Andrew L.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2012, 45 : 1321 - 1329