Critical survival barrier for branching random walk

被引:1
|
作者
Liu, Jingning [1 ]
Zhang, Mei [1 ,2 ]
机构
[1] Chongqing Normal Univ, Sch Math Sciences, Chongqing, Peoples R China
[2] Beijing Normal Univ, Sch Math Sciences, Lab Math, Complex Syst, Beijing, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching random walk; alpha-stable spine; absorption; critical barrier;
D O I
10.1007/s11464-019-0806-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a branching random walk with an absorbing barrier, where the associated one-dimensional random walk is in the domain of attraction of an alpha-stable law. We shall prove that there is a barrier and a critical value such that the process dies under the critical barrier, and survives above it. This generalizes previous result in the case that the associated random walk has finite variance.
引用
收藏
页码:1259 / 1280
页数:22
相关论文
共 50 条
  • [41] A branching random walk in the presence of a hard wall
    Roy, Rishideep
    JOURNAL OF APPLIED PROBABILITY, 2024, 61 (01) : 1 - 17
  • [42] Competition on Zd driven by branching random walk
    Deijfen, Maria
    Vilkas, Timo
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [43] Large deviations for the maximum of a branching random walk
    Gantert, Nina
    Hoefelsauer, Thomas
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [44] Martingale convergence and the stopped branching random walk
    Kyprianou, AE
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (03) : 405 - 419
  • [45] BRANCHING RANDOM WALK SOLUTIONS TO THE WIGNER EQUATION
    Shao, Sihong
    Xiong, Yunfeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2589 - 2608
  • [46] CONVERGENCE IN LAW OF THE MINIMUM OF A BRANCHING RANDOM WALK
    Aidekon, Elie
    ANNALS OF PROBABILITY, 2013, 41 (3A) : 1362 - 1426
  • [47] CLUSTERING EFFECT FOR MULTITYPE BRANCHING RANDOM WALK
    Balashova, D. M.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (03) : 352 - 362
  • [48] A Branching Random Walk Seen from the Tip
    Brunet, Eric
    Derrida, Bernard
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (03) : 420 - 446
  • [49] A VARIATIONAL APPROACH TO BRANCHING RANDOM-WALK IN RANDOM ENVIRONMENT
    BAILLON, JB
    CLEMENT, PH
    GREVEN, A
    DENHOLLANDER, F
    ANNALS OF PROBABILITY, 1993, 21 (01) : 290 - 317
  • [50] Branching random walk in a random time-independent environment
    Chernousova, Elena
    Hryniv, Ostap
    Molchanov, Stanislav
    MATHEMATICAL POPULATION STUDIES, 2023, 30 (02) : 73 - 94