Critical survival barrier for branching random walk

被引:1
|
作者
Liu, Jingning [1 ]
Zhang, Mei [1 ,2 ]
机构
[1] Chongqing Normal Univ, Sch Math Sciences, Chongqing, Peoples R China
[2] Beijing Normal Univ, Sch Math Sciences, Lab Math, Complex Syst, Beijing, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching random walk; alpha-stable spine; absorption; critical barrier;
D O I
10.1007/s11464-019-0806-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a branching random walk with an absorbing barrier, where the associated one-dimensional random walk is in the domain of attraction of an alpha-stable law. We shall prove that there is a barrier and a critical value such that the process dies under the critical barrier, and survives above it. This generalizes previous result in the case that the associated random walk has finite variance.
引用
收藏
页码:1259 / 1280
页数:22
相关论文
共 50 条
  • [31] The range of asymmetric branching random walk
    Chi, Jui-Lin
    Hong, Jyy-, I
    STATISTICS & PROBABILITY LETTERS, 2023, 193
  • [32] Scenery reconstruction with branching random walk
    Popov, Serguei
    Pachon, Angelica
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2011, 83 (02) : 107 - 116
  • [33] ON THE DERIVATIVE MARTINGALE IN A BRANCHING RANDOM WALK
    Buraczewski, Dariusz
    Iksanov, Alexander
    Mallein, Bastien
    ANNALS OF PROBABILITY, 2021, 49 (03) : 1164 - 1204
  • [34] A prediction problem of the branching random walk
    Révész, P
    JOURNAL OF APPLIED PROBABILITY, 2004, 41A : 25 - 31
  • [35] MINIMAL POSITIONS IN A BRANCHING RANDOM WALK
    McDiarmid, Colin
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (01) : 128 - 139
  • [36] Subsequential tightness for branching random walk in random environment
    Kriechbaum, Xaver
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26
  • [37] On the Dynamics of Branching Random Walk on Random Regular Graph
    Mayaguchi, Takuro
    Sakaguchi, Ryota
    Ohsaki, Hiroyuki
    2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), 2020, : 307 - 311
  • [38] Steady state and intermittency in the critical branching random walk with arbitrary total number of offspring
    Chernousova, Elena
    Molchanov, Stanislav
    MATHEMATICAL POPULATION STUDIES, 2019, 26 (01) : 47 - 63
  • [39] ON SENETA-HEYDE SCALING FOR A STABLE BRANCHING RANDOM WALK
    He, Hui
    Liu, Jingning
    Zhang, Mei
    ADVANCES IN APPLIED PROBABILITY, 2018, 50 (02) : 565 - 599
  • [40] INTERMITTENCY FOR BRANCHING RANDOM WALK IN PARETO ENVIRONMENT
    Ortgiese, Marcel
    Roberts, Matthew I.
    ANNALS OF PROBABILITY, 2016, 44 (03) : 2198 - 2263