Extraction of Urban Areas From Polarimetric SAR Imagery

被引:33
作者
Azmedroub, Boussad [1 ]
Ouarzeddine, Mounira [1 ]
Souissi, Boularbah [1 ]
机构
[1] USTHB, Dept Telecommun, LTIR, Algiers 16111, Algeria
关键词
Radar polarimetry; radar target recognition; scattering; urban area detection; SCATTERING MODEL; CLASSIFICATION; COMPENSATION;
D O I
10.1109/JSTARS.2016.2527242
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Polarimetric synthetic aperture radar (PolSAR) images are extensively used for land-use/land-cover (LULC) classification. One of the important issues in radar remote sensing is urban area detection, where difficulties are found because of its heterogeneity. In this paper, we are interested in urban area detection using PolSAR images which allow us detecting the scattering mechanisms by the use of polarimetric target decompositions methods. We propose in this paper two methods: in the first one, we use the powers of Yamaguchi four-component decomposition and in the second method, we use the coefficients of PolSAR covariance matrix calculated in the circular polarization basis. We added in each method the complex Wishart maximum likelihood (ML) classifier to refine the classification results. To validate both methods, we used two PolSAR images acquired in C-band by RADARSAT-2 satellite over the El Hamiz city in Algeria and San Francisco Bay. The two proposed algorithms give accurate results in both test sites, with superiority of the circular condition method.
引用
收藏
页码:2583 / 2591
页数:9
相关论文
共 19 条
[1]   An entropy based classification scheme for land applications of polarimetric SAR [J].
Cloude, SR ;
Pottier, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (01) :68-78
[2]   SUPERVISED CLASSIFICATION BY NEURAL NETWORKS USING POLARIMETRIC TIME-FREQUENCY SIGNATURES [J].
Duquenoy, M. ;
Ovarlez, J. P. ;
Morisseau, C. ;
Vieillard, G. ;
Ferro-Famil, L. ;
Pottier, E. .
2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, :2818-+
[3]   A three-component scattering model for polarimetric SAR data [J].
Freeman, A ;
Durden, SL .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (03) :963-973
[4]   APPLICATION OF NEURAL NETWORKS TO RADAR IMAGE CLASSIFICATION [J].
HARA, Y ;
ATKINS, RG ;
YUEH, SH ;
SHIN, RT ;
KONG, JA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (01) :100-109
[5]   Urban-Area Extraction From Polarimetric SAR Images Using Polarization Orientation Angle [J].
Kajimoto, Muneyoshi ;
Susaki, Junichi .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) :337-341
[6]  
KROGAGER E, 1991, NTC 91 : NATIONAL TELESYSTEMS CONFERENCE PROCEEDINGS, VOL 1, P77, DOI 10.1109/NTC.1991.147990
[7]  
Lee JS, 2009, OPT SCI ENG-CRC, P1
[8]   The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompositions [J].
Lee, Jong-Sen ;
Ainsworth, Thomas L. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (01) :53-64
[9]   Unsupervised classification using polarimetric decomposition and the complex Wishart classifier [J].
Lee, JS ;
Grunes, MR ;
Ainsworth, TL ;
Du, LJ ;
Schuler, DL ;
Cloude, SR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (05) :2249-2258
[10]   REFINED FILTERING OF IMAGE NOISE USING LOCAL STATISTICS [J].
LEE, JS .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1981, 15 (04) :380-389