Presentation of affine Kac-Moody groups over rings

被引:6
作者
Allcock, Daniel [1 ]
机构
[1] Univ Texas Austin, Dept Math, RLM 8-100,2515 Speedway Stop C1200, Austin, TX 78712 USA
基金
日本学术振兴会;
关键词
affine Kac-Moody group; Steinberg group; Curtis-Tits presentation;
D O I
10.2140/ant.2016.10.533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Tits has defined Steinberg groups and Kac-Moody groups for any root system and any commutative ring R. We establish a Curtis-Tits-style presentation for the Steinberg group St of any irreducible affine root system with rank >= 3, for any R. Namely, St is the direct limit of the Steinberg groups coming from the 1- and 2-node subdiagrams of the Dynkin diagram. In fact, we give a completely explicit presentation. Using this we show that St is finitely presented if the rank is >= 4 and R is finitely generated as a ring, or if the rank is 3 and R is finitely generated as a module over a subring generated by finitely many units. Similar results hold for the corresponding Kac-Moody groups when R is a Dedekind domain of arithmetic type.
引用
收藏
页码:533 / 556
页数:24
相关论文
共 27 条
[1]   Presentation by amalgamation of certain twin BN-pairs [J].
Abramenko, P ;
Muhlherr, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :701-706
[2]  
Allcock D., 2015, 13072689 ARXIV
[3]   Presentation of hyperbolic Kac-Moody groups over rings [J].
Allcock, Daniel ;
Carbone, Lisa .
JOURNAL OF ALGEBRA, 2016, 445 :232-243
[4]  
[Anonymous], 1972, PURE APPL MATH
[5]  
Bao L., 2015, 13086194 ARXIV
[6]  
Behr H, 1998, J REINE ANGEW MATH, V495, P79
[7]   Bounded presentations of Kac-Moody groups [J].
Capdeboscq, Inna .
JOURNAL OF GROUP THEORY, 2013, 16 (06) :899-905
[8]  
Carbone L., 2012, PREPRINT
[9]   On the simple connectedness of certain subsets of buildings [J].
Devillers, Alice ;
Muhlherr, Bernhard .
FORUM MATHEMATICUM, 2007, 19 (06) :955-970
[10]   Quasi-flats and rigidity in higher rank symmetric spaces [J].
Eskin, A ;
Farb, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (03) :653-692