Direct-Write Deposition and Focused-Electron-Beam-Induced Purification of Gold Nanostructures

被引:43
作者
Belic, Domagoj [1 ]
Shawrav, Mostafa M. [1 ]
Gavagnin, Marco [1 ]
Stoeger-Pollach, Michael [2 ]
Wanzenboeck, Heinz D. [1 ]
Bertagnolli, Emmerich [1 ]
机构
[1] Vienna Univ Technol, Inst Solid State Elect, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Univ Serv Ctr Transmiss Electron Microscopy USTEM, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
FEBID; gold nanostructure; nanopillar; nanowire; purity; FEBIC; oxygen plasma cleaning; GROWTH; TEMPERATURE; RESOLUTION; LITHOGRAPHY; FABRICATION; MICROSCOPY; NANOWIRES; PLATINUM; DEVICES; WIRES;
D O I
10.1021/am507327y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three-dimensional gold (Au) nanostructures offer promise in nanoplasmonics, biomedical applications, electrochemical sensing and as contacts for carbon-based electronics. Direct-write techniques such as focused-electron-beam-induced deposition (FEBID) can provide such precisely patterned nanostructures. Unfortunately, FEBID Au traditionally suffers from a high nonmetallic content and cannot meet the purity requirements for these applications. Here we report exceptionally pure pristine FEBID Au nanostructures comprising submicrometer-large monocrystalline Au sections. On the basis of high-resolution transmission electron microscopy results and Monte Carlo simulations of electron trajectories in the deposited nanostructures, we propose a curing mechanism that elucidates the observed phenomena. The in situ focused-electron-beam-induced curing mechanism was supported by postdeposition ex situ curing and, in combination with oxygen plasma cleaning, is utilized as a straightforward purification method for planar FEBID structures. This work paves the way for the application of FEBID Au nanostructures in a new generation of biosensors and plasmonic nanodevices.
引用
收藏
页码:2467 / 2479
页数:13
相关论文
共 63 条
[1]   Fundamental Resolution Limits during Electron-Induced Direct-Write Synthesis [J].
Arnold, Georg ;
Timilsina, Rajendra ;
Fowlkes, Jason ;
Orthacker, Angelina ;
Kothleitner, Gerald ;
Rack, Philip D. ;
Plank, Harald .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :7380-7387
[2]   Purification of platinum and gold structures after electron-beam-induced deposition [J].
Botman, A. ;
Mulders, J. J. L. ;
Weemaes, R. ;
Mentink, S. .
NANOTECHNOLOGY, 2006, 17 (15) :3779-3785
[3]   Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective [J].
Botman, A. ;
Mulders, J. J. L. ;
Hagen, C. W. .
NANOTECHNOLOGY, 2009, 20 (37)
[4]   Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold [J].
Brintlinger, T ;
Fuhrer, MS ;
Melngailis, J ;
Utke, I ;
Bret, T ;
Perentes, A ;
Hoffmann, P ;
Abourida, M ;
Doppelt, P .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (06) :3174-3177
[5]   Dynamical behaviour of nanocrystals in transmission electron microscopy: size, temperature or irradiation effects [J].
Buffat, PA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803) :291-295
[6]   Proximity effects in free-standing EBID structures [J].
Burbridge, Daniel J. ;
Gordeev, Sergey N. .
NANOTECHNOLOGY, 2009, 20 (28)
[7]   Strategies for the immobilization of nanoparticles using electron beam induced deposition [J].
Burbridge, Daniel J. ;
Crampin, Simon ;
Viau, Guillaume ;
Gordeev, Sergey N. .
NANOTECHNOLOGY, 2008, 19 (44)
[8]   Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software [J].
Demers, Hendrix ;
Poirier-Demers, Nicolas ;
Couture, Alexandre Real ;
Joly, Dany ;
Guilmain, Marc ;
de Jonge, Niels ;
Drouin, Dominique .
SCANNING, 2011, 33 (03) :135-146
[9]   ELECTRON-BEAM DEPOSITION OF GOLD NANOSTRUCTURES IN A REACTIVE ENVIRONMENT [J].
FOLCH, A ;
TEJADA, J ;
PETERS, CH ;
WRIGHTON, MS .
APPLIED PHYSICS LETTERS, 1995, 66 (16) :2080-2082
[10]   An optimized nanoparticle separator enabled by electron beam induced deposition [J].
Fowlkes, J. D. ;
Doktycz, M. J. ;
Rack, P. D. .
NANOTECHNOLOGY, 2010, 21 (16)