AN ITERATIVE METHOD FOR TIKHONOV REGULARIZATION WITH A GENERAL LINEAR REGULARIZATION OPERATOR

被引:46
作者
Hochstenbach, Michiel E. [1 ]
Reichel, Lothar [2 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Discrete ill-posed problem; iterative method; Tikhonov regularization; general linear regularization operator; discrepancy principle; PRECONDITIONED LSQR; SINGULAR-VALUES;
D O I
10.1216/JIE-2010-22-3-465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan bidiagonalization, for solving large-scale Tikhonov minimization problems with a linear regularization operator of general form. The regularization parameter is determined by the discrepancy principle. Computed examples illustrate the performance of the method.
引用
收藏
页码:465 / 482
页数:18
相关论文
共 23 条
[2]   Decomposition methods for large linear discrete ill-posed problems [J].
Baglama, James ;
Reichel, Lothar .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (02) :332-343
[3]  
Bjorck A, 1996, NUMERICAL METHODS L
[4]   An improved preconditioned LSQR for discrete ill-posed problems [J].
Bunse-Gerstner, Angelika ;
Guerra-Ones, Valia ;
de La Vega, Humberto Madrid .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 73 (1-4) :65-75
[5]   Invertible smoothing preconditioners for linear discrete ill-posed problems [J].
Calvetti, D ;
Reichel, L ;
Shuibi, A .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) :135-149
[6]   Tikhonov regularization of large linear problems [J].
Calvetti, D ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 2003, 43 (02) :263-283
[7]  
Calvetti D, 2002, ELECTRON T NUMER ANA, V14, P20
[8]   REORTHOGONALIZATION AND STABLE ALGORITHMS FOR UPDATING GRAM-SCHMIDT QR FACTORIZATION [J].
DANIEL, JW ;
GRAGG, WB ;
KAUFMAN, L ;
STEWART, GW .
MATHEMATICS OF COMPUTATION, 1976, 30 (136) :772-795
[9]  
ELDEN L, 1982, BIT, V22, P487, DOI 10.1007/BF01934412
[10]  
Engl H. W., 1996, REGULARIZATION INVER