Automatically localising ROIs in hyperspectral images using background subtraction techniques

被引:1
作者
Shah, Munir [1 ]
Cave, Vanessa [2 ]
dos Reis, Marlon [3 ]
机构
[1] AgResearch, Christchurch, New Zealand
[2] AgResearch, Hamilton, New Zealand
[3] AgResearch, Grasslands, New Zealand
来源
2020 35TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ) | 2020年
关键词
hyperspectral images; food analysis; automated object localization; foreground extraction; agriculture; MODEL;
D O I
10.1109/ivcnz51579.2020.9290728
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of snapshot hyperspectral cameras is becoming increasingly popular in agricultural scientific studies. One of the key steps in processing experimental hyperspectral data is to precisely locate the sample material under study and separate it from other background material, such as sampling instruments or equipment. This is very laborious work, especially for hyperspectral imaging scenarios where there might be a few hundred spectral images per sample. In this paper we propose a multiple-background modelling approach for automatically localising the Regions of Interest (ROIs) in hyperspectral images. The two key components of this method are i) modelling each spectral band individually and ii) applying a consensus algorithm to obtain the final ROIs for the whole hyperspectral image. Our proposed approach is able to achieve approximately a 14% improvement in ROIs detection in hyperspectral images compared to traditional video background modelling techniques.
引用
收藏
页数:6
相关论文
共 35 条
[1]  
[Anonymous], 2018, Machine learning based hyperspectral image analysis: a survey
[2]  
Bouwmans T., 2009, HDB PATTERN RECOGNIT, VFourth, P181
[3]   Computational Snapshot Multispectral Cameras Toward dynamic capture of the spectral world [J].
Cao, Xun ;
Yue, Tao ;
Lin, Xing ;
Lin, Stephen ;
Yuan, Xin ;
Dai, Qionghai ;
Carin, Lawrence ;
Brady, David J. .
IEEE SIGNAL PROCESSING MAGAZINE, 2016, 33 (05) :95-108
[4]  
Eismann M T, 2012, Hyperspectral Remote Sensing, P1, DOI [10.1117/3.899758, DOI 10.1117/3.899758]
[5]   Unsupervised learning of finite mixture models [J].
Figueiredo, MAT ;
Jain, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (03) :381-396
[6]  
[高泽东 Gao Zedong], 2020, [光学精密工程, Optics and Precision Engineering], V28, P1323
[7]   Background subtraction in real applications: Challenges, current models and future directions [J].
Garcia-Garcia, Belmar ;
Bouwmans, Thierry ;
Rosales Silva, Alberto Jorge .
COMPUTER SCIENCE REVIEW, 2020, 35 (35)
[8]   New Frontiers in Spectral-Spatial Hyperspectral Image Classification The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning [J].
Ghamisi, Pedram ;
Maggiori, Emmanuel ;
Li, Shutao ;
Souza, Roberto ;
Tarabalka, Yuliya ;
Moser, Gabriele ;
De Giorgi, Andrea ;
Fang, Leyuan ;
Chen, Yushi ;
Chi, Mingmin ;
Serpico, Sebastiano B. ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2018, 6 (03) :10-43
[9]   Advances in Hyperspectral Image and Signal Processing A comprehensive overview of the state of the art [J].
Ghamisi, Pedram ;
Yokoya, Naoto ;
Li, Jun ;
Liao, Wenzhi ;
Liu, Sicong ;
Plaza, Javier ;
Rasti, Behnood ;
Plaza, Antonio .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2017, 5 (04) :37-78
[10]   Hierarchical Method for Foreground Detection Using Codebook Model [J].
Guo, Jing-Ming ;
Liu, Yun-Fu ;
Hsia, Chih-Hsien ;
Shih, Min-Hsiung ;
Hsu, Chih-Sheng .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2011, 21 (06) :804-815