In the absence of telomerase or other mechanisms to maintain their length, telomeres in human cells shorten at each round of cell division. This has been suggested to ultimately cause cell cycle exit when a critical telomere length is reached, leading to replicative senescence of the cell. At present, it is not clear whether the division potential of human cells is limited by the overall shortening of telomeres at all chromosomes or the shortening of specific telomeres on certain particular chromosomes. By computer simulations, my previous work has suggested that if the telomere theory is correct, the shortening of only a few, most likely two, telomeres might be preferentially involved in restricting the division of human cells. In this work, the length dynamics of individual telomeres in simulated cell clones were examined over their life span. It is shown that if the shortening of only two telomeres is responsible for restricting the proliferation of a cell, these two specific telomeres will shorten at different rates and have different length distributions from those of the rest telomeres, The unique pattern of length dynamics associated with the proliferation-restricting telomeres (PRT) provides a possibility of experimentally identifying these particular telomeres in human cells. (C) 2001 Elsevier Science Inc. All rights reserved.