Orthogonal polynomials associated with an inverse quadratic spectral transform

被引:21
作者
Alfaro, Manuel [2 ,3 ]
Pena, Ana [2 ,3 ]
Rezola, M. Luisa [2 ,3 ]
Marcellan, Francisco [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Leganes, Spain
[2] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
关键词
Orthogonal polynomials; Recurrence relations; Linear functionals; Jacobi matrices; LINEARLY RELATED SEQUENCES; FUNCTIONALS;
D O I
10.1016/j.camwa.2010.12.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {P-n}(n >= 0) be a sequence of monic orthogonal polynomials with respect to a quasi-definite linear functional u and (Q(n)}(n >= 0) a sequence of polynomials defined by Q(n)(x) = P-n(x) + s(n) P(n-1()x) + t(n) P(n-2()x), n >= 1, with t(n) not equal 0 for n >= 2. We obtain a new characterization of the orthogonality of the sequence {Q}(n >= 0) with respect to a linear functional nu, in terms of the coefficients of a quadratic polynomial h such that h(x) upsilon = u. We also study some cases in which the parameters s(n) and t(n) can be computed more easily, and give several examples. Finally, the interpretation of such a perturbation in terms of the Jacobi matrices associated with {P-n}(n >= 0) and {Q(n))(n >= 0) is presented. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:888 / 900
页数:13
相关论文
共 30 条
[1]   On rational transformations of linear functionals:: direct problem [J].
Alfaro, M ;
Marcellán, F ;
Peña, A ;
Rezola, ML .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) :171-183
[2]   On linearly related orthogonal polynomials and their functionals [J].
Alfaro, M ;
Marcellán, F ;
Peña, A ;
Rezola, ML .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 287 (01) :307-319
[3]   When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials? [J].
Alfaro, Manuel ;
Marcellan, Francisco ;
Pena, Ana ;
Luisa Rezola, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (06) :1446-1452
[4]   On the inverse problem of the product of a semi-classical form by a polynomial [J].
Beghdadi, D ;
Maroni, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (02) :377-399
[5]  
BRANQUINHO A, 1996, INT J MATH MATH SCI, V19, P643, DOI DOI 10.1155/S0161171296000919
[6]   Darboux transformation and perturbation of linear functionals [J].
Bueno, MI ;
Marcellán, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 :215-242
[7]  
Chihara Theodore S, 2011, An introduction to orthogonal polynomials
[8]  
Chihara TS., 1957, Proc. Am. Math. Soc, V5, P899, DOI [10.1090/S0002-9939-1957-0092015-5, DOI 10.1090/S0002-9939-1957-0092015-5]
[9]   On linearly related sequences of derivatives of orthogonal polynomials [J].
de Jesus, M. N. ;
Petronilho, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) :482-492
[10]  
Elhay S., 1994, Numerical Algorithms, V6, P205, DOI 10.1007/BF02142672