Discovery of Paenibacillus larvae ERIC V: Phenotypic and genomic comparison to genotypes ERIC I-IV reveal different inventories of virulence factors which correlate with epidemiological prevalences of American Foulbrood

被引:54
作者
Beims, Hannes [1 ,2 ]
Bunk, Boyke [3 ]
Erler, Silvio [4 ,6 ]
Mohr, Kathrin, I [5 ]
Sproeer, Cathrin [3 ]
Pradella, Silke [3 ]
Guenther, Gabi [1 ]
Rohde, Manfred [5 ]
von der Ohe, Werner [2 ]
Steinert, Michael [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Mikrobiol, Braunschweig, Germany
[2] Inst Apiculture, Lower Saxony State Off Consumer Protect & Food Sa, Celle, Germany
[3] Leibniz Inst DSMZ German Collect Microorganisms &, Braunschweig, Germany
[4] Martin Luther Univ Halle Wittenberg, Inst Biol Zool, Halle, Germany
[5] Helmholtz Ctr Infect Res, Dept Microbial Drugs, Cent Facil Microscopy, Braunschweig, Germany
[6] Julius Kuhn Inst, Inst Bienenschutz, Braunschweig, Germany
关键词
Paenibacillus larvae; American Foulbrood; Honey bee; ERIC genotype; Epidemiological prevalence; CAUSATIVE AGENT; MYCOBACTERIUM-TUBERCULOSIS; SUBSP LARVAE; PATHOGEN; SEQUENCE; TOXIN; RECLASSIFICATION; IDENTIFICATION; PULVIFACIENS; EXPRESSION;
D O I
10.1016/j.ijmm.2020.151394
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a highly contagious brood disease of honey bees (Apis mellifera). AFB requires mandatory reporting to the veterinary authority in many countries and until now four genotypes, P. larvae ERIC I-IV, have been identified. We isolated a new genotype, ERIC V, from a Spanish honey sample. After a detailed phenotypic comparison with the reference strains of the ERIC I-IV genotypes, including spore morphology, non-ribosomal peptide (NRP) profiling, and in vivo infections of A. mellifera larvae, we established a genomic DNA Macrorestriction Fragment Pattern Analysis (MRFPA) scheme for future epidemiologic discrimination. Whole genome comparison of the reference strains and the new ERIC V genotype (DSM 106052) revealed that the respective virulence gene inventories of the five genotypes corresponded with the time needed to kill 100 % of the infected bee larvae (LT100) in in vivo infection assays. The rarely isolated P. larvae genotypes ERIC II I-V with a fast-killing phenotype (LT100 3 days) harbor genes with high homology to virulence factors of other insect pathogens. These virulence genes are absent in the epidemiologically prevalent genotypes ERIC I (LT100 12 days) and ERIC II (LT100 7 days), which exhibit slower killing phenotypes. Since killing-retardation is known to reduce the success of hygienic cleaning by nurse bees, the identified absence of virulence factors might explain the epidemiological prevalences of ERIC genotypes. The discovery of the P. larvae ERIC V isolate suggests that more unknown ERIC genotypes exist in bee colonies. Since inactivation or loss of a few genes can transform a fast-killing phenotype into a more dangerous slow-killing phenotype, these rarely isolated genotypes may represent a hidden reservoir for future AFB outbreaks.
引用
收藏
页数:11
相关论文
共 54 条
[11]   Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors [J].
Bengoechea, JA ;
Najdenski, H ;
Skurnik, M .
MOLECULAR MICROBIOLOGY, 2004, 52 (02) :451-469
[12]   Contribution of type IV pili to the virulence of Aeromonas salmonicida subsp salmonicida in Atlantic salmon (Salmo salar l.) [J].
Boyd, Jessica M. ;
Dacanay, Andrew ;
Knickle, Leah C. ;
Touhami, Ahmed ;
Brown, Laura L. ;
Jericho, Manfred H. ;
Johnson, Stewart C. ;
Reith, Michael .
INFECTION AND IMMUNITY, 2008, 76 (04) :1445-1455
[13]   Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data [J].
Carver, Tim ;
Harris, Simon R. ;
Berriman, Matthew ;
Parkhill, Julian ;
McQuillan, Jacqueline A. .
BIOINFORMATICS, 2012, 28 (04) :464-469
[14]   Updated genome assembly and annotation of Paenibacillus larvae, the agent of American foulbrood disease of honey bees [J].
Chan, Queenie W. T. ;
Cornman, R. Scott ;
Birol, Inanc ;
Liao, Nancy Y. ;
Chan, Simon K. ;
Docking, T. Roderick ;
Jackman, Shaun D. ;
Taylor, Greg A. ;
Jones, Steven J. M. ;
de Graaf, Dirk C. ;
Evans, Jay D. ;
Foster, Leonard J. .
BMC GENOMICS, 2011, 12
[15]   VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on [J].
Chen, Lihong ;
Zheng, Dandan ;
Liu, Bo ;
Yang, Jian ;
Jin, Qi .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D694-D697
[16]   The Enterococcus faecalis cytolysin:: a novel toxin active against eukaryotic and prokaryotic cells [J].
Coburn, PS ;
Gilmore, MS .
CELLULAR MICROBIOLOGY, 2003, 5 (10) :661-669
[17]   progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement [J].
Darling, Aaron E. ;
Mau, Bob ;
Perna, Nicole T. .
PLOS ONE, 2010, 5 (06)
[18]   Genome sequence of Yersinia pestis KIM [J].
Deng, W ;
Burland, V ;
Plunkett, G ;
Boutin, A ;
Mayhew, GF ;
Liss, P ;
Perna, NT ;
Rose, DJ ;
Mau, B ;
Zhou, SG ;
Schwartz, DC ;
Fetherston, JD ;
Lindler, LE ;
Brubaker, RR ;
Plano, GV ;
Straley, SC ;
McDonough, KA ;
Nilles, ML ;
Matson, JS ;
Blattner, FR ;
Perry, RD .
JOURNAL OF BACTERIOLOGY, 2002, 184 (16) :4601-4611
[19]   Multiple Locus Variable number of tandem repeat Analysis: A molecular genotyping tool for Paenibacillus larvae [J].
Descamps, Tine ;
De Smet, Lina ;
Stragier, Pieter ;
De Vos, Paul ;
de Graaf, Dirk C. .
MICROBIAL BIOTECHNOLOGY, 2016, 9 (06) :772-781
[20]   Comparative Genomics and Description of Putative Virulence Factors of Melissococcus plutonius, the Causative Agent of European Foulbrood Disease in Honey Bees [J].
Djukic, Marvin ;
Erler, Silvio ;
Leimbach, Andreas ;
Grossar, Daniela ;
Charriere, Jean-Daniel ;
Gauthier, Laurent ;
Hartken, Denise ;
Dietrich, Sascha ;
Nacke, Heiko ;
Daniel, Rolf ;
Poehlein, Anja .
GENES, 2018, 9 (08)