Learned Performance Model for SSD

被引:2
作者
Lee, Hyeon Gyu [1 ]
Kim, Minwook [1 ]
Lee, Juwon [2 ]
Lee, Eunji [3 ]
Kim, Bryan S. [4 ]
Lee, Sungjin [5 ]
Kim, Yeseong [5 ]
Min, Sang Lyul [1 ]
Kim, Jin-Soo [1 ]
机构
[1] Seoul Natl Univ, Seoul 03080, South Korea
[2] FADU, Seoul 06145, South Korea
[3] Soongsil Univ, Seoul 06978, South Korea
[4] Syracuse Univ, Syracuse, NY 13244 USA
[5] DGIST, Daegu 42988, South Korea
基金
新加坡国家研究基金会;
关键词
Predictive models; Prototypes; Hardware; Ash; Performance evaluation; Linear regression; Data models; Cross-platform; performance prediction; solid state drives; simulation;
D O I
10.1109/LCA.2021.3120728
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of new SSDs with ultra-low latency makes the validation of their firmware critical in the development process. However, existing SSD simulators do not sufficiently achieve high accuracy in their performance estimations for their firmware. In this paper, we present an accurate and data-driven performance model that builds a cross-platform relationship between the simulator and target platform. We directly execute the firmware on both platforms, collect its related performance profiles, and construct a performance model that infers the firmware's performance on the target platform using performance events from the simulation. We explore both a linear regression model and a deep neural network model, and our cross-validation shows that our model achieves a percent error of 3.1%, significantly lower than 18.9% from a state-of-the-art simulator.
引用
收藏
页码:154 / 157
页数:4
相关论文
共 24 条
[1]  
Agrawal N, 2008, P USENIX ANN TECHN C, P57, DOI DOI 10.1109/ISSCC.2012.6177101
[2]  
ARM, 2020, ARM STOR SOL SSD CON
[3]  
Cheong W, 2018, ISSCC DIG TECH PAP I, P338, DOI 10.1109/ISSCC.2018.8310322
[4]  
De Melo A. C., 2010, SLIDES LINUX K, V18, P1
[5]   Amber: Enabling Precise Full-System Simulation with Detailed Modeling of All SSD Resources [J].
Gouk, Donghyun ;
Kwon, Miryeong ;
Zhang, Jie ;
Koh, Sungjoon ;
Choi, Wonil ;
Kim, Nam Sung ;
Kandemir, Mahmut ;
Jung, Myoungsoo .
2018 51ST ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2018, :469-481
[6]   Platform Storage Performance With 3D XPoint Technology [J].
Hady, Frank T. ;
Foong, Annie ;
Veal, Bryan ;
Williams, Dan .
PROCEEDINGS OF THE IEEE, 2017, 105 (09) :1822-1833
[7]   The Unwritten Contract of Solid State Drives [J].
He, Jun ;
Kannan, Sudarsun ;
Arpaci-Dusseau, Andrea C. ;
Arpaci-Dusseau, Remzi H. .
PROCEEDINGS OF THE TWELFTH EUROPEAN CONFERENCE ON COMPUTER SYSTEMS (EUROSYS 2017), 2017, :127-144
[8]  
Hu Yang, 2011, P INT C SUP, P96
[9]  
Iranfar A, 2019, IEEE INT CONF VLSI, P211, DOI [10.1109/VLSI-SoC.2019.8920309, 10.1109/vlsi-soc.2019.8920309]
[10]  
Jung M, 2020, PROCEEDINGS OF THE 2020 USENIX ANNUAL TECHNICAL CONFERENCE, P649