Comparison of in-situ Raman studies of SOFC with thick single-crystal and thin-film magnetron sputtered membranes

被引:6
作者
Agarkov, D. A. [1 ,2 ]
Burmistrov, I. N. [1 ,2 ]
Eliseeva, G. M. [1 ]
Ionov, I. V. [3 ]
Rabotkin, S. V. [3 ]
Semenov, V. A. [3 ]
Solovyev, A. A. [3 ]
Tartakovskii, I. I. [1 ,4 ]
Bredikhin, S. I. [1 ,2 ]
机构
[1] RAS, Inst Solid State Phys, 2 Acad Osipyan Str, Chernogolovka 142432, Moscow Distr, Russia
[2] Moscow Inst Phys & Technol, Inst Sky Lane 9, Dolgoprudnyi 141700, Moscow District, Russia
[3] RAS, SB, Inst High Current Elect, Akad Skiy Pr 2-3, Tomsk 634055, Russia
[4] Natl Res Univ, Higher Sch Econ, Myasnitskaya 20, Moscow 101000, Russia
基金
俄罗斯科学基金会;
关键词
Solid oxide fuel cells; Electrolyte-supported; Single-crystal solid electrolyte; Anode-supported; Thin-film electrolyte; Overpotential; OXIDE FUEL-CELLS; DIMETHYL ETHER; SPECTROSCOPY ANALYSIS; ELECTRODE ASSEMBLIES; HYDROGEN-PRODUCTION; SUPPORTED SOFC; TEMPERATURE; ANODES; FABRICATION; PERFORMANCE;
D O I
10.1016/j.ssi.2019.115091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In current work, we conducted comparative studies of electrolyte-supported and anode-supported solid oxide fuel cells by means of electrochemical techniques (studies of I-V curves and impedance spectroscopy) as well as using Raman spectroscopy from the inner interface of the anode electrode and solid electrolyte. Electrolyte-supported (ESC) SOFCs were based on thick single-crystalline 8YSZ anion conductor membrane and had multilayered composite electrodes. Anode-supported cells (ASC) were based on thick two-layered commercially available anode supports, the thin-film electrolyte was deposited using a magnetron sputtering technique. Comparative studies showed a significant dependence of 460 cm(-1) Raman peak both on fuel mixture composition and current load applied to the cell. Linear dependences of OCV on normalized peak area gave an opportunity to estimate local anodic overpotential on the current load applied for both SOFC structures. Application of ASC model cells gave an opportunity to significantly extend a range of current loads applied. Analysis of impedance spectra gave the opportunity to study the structure of complex resistance as well as the structure of local anodic overpotential obtained.
引用
收藏
页数:9
相关论文
共 72 条
[1]   Performance analysis of irreversible solid oxide fuel cell - Brayton heat engine with ecological based thermo-environmental criterion [J].
Acikkalp, Emin .
ENERGY CONVERSION AND MANAGEMENT, 2017, 148 :279-286
[2]   TRANSPORT PROPERTIES OF SINGLE CRYSTALS OF SOLID ELECTROLYTES BASED ON ZrO2-Sc2O3 CO-DOPED BY SCANDIA, YTTRIA, YTTERBIA AND CERIA [J].
Agarkov, D. A. ;
Borik, M. A. ;
Bredikhin, S., I ;
Burmistrov, I. N. ;
Chislov, A. S. ;
Eliseeva, G. M. ;
Kolotygin, V. A. ;
Kulebyakin, A., V ;
Kuritsyna, I. E. ;
Lomonova, E. E. ;
Milovich, F. O. ;
Myzina, V. A. ;
Tabachkova, N. Yu .
CHEMICAL PROBLEMS, 2019, (02) :235-245
[3]   Structure and transport properties of zirconia crystals co-doped by scandia, ceria and yttria [J].
Agarkov, D. A. ;
Borik, M. A. ;
Bredikhin, S., I ;
Burmistrov, I. N. ;
Eliseeva, G. M. ;
Kolotygin, V. A. ;
Kulebyakin, A., V ;
Kuritsyna, I. E. ;
Lomonova, E. E. ;
Milovich, F. O. ;
Myzina, V. A. ;
Ryabochkina, P. A. ;
Tabachkova, N. Yu ;
Volkova, T. V. .
JOURNAL OF MATERIOMICS, 2019, 5 (02) :273-279
[4]   In-situ Raman spectroscopy analysis of the interface between ceria-containing SOFC anode and stabilized zirconia electrolyte [J].
Agarkov, D. A. ;
Burmistrov, I. N. ;
Tsybrov, F. M. ;
Tartakovskii, I. I. ;
Kharton, V. V. ;
Bredikhin, S. I. .
SOLID STATE IONICS, 2018, 319 :125-129
[5]   In-situ Raman spectroscopy analysis of the interfaces between Ni-based SOFC anodes and stabilized zirconia electrolyte [J].
Agarkov, D. A. ;
Burmistrov, I. N. ;
Tsybrov, F. M. ;
Tartakovskii, I. I. ;
Kharton, V. V. ;
Bredikhin, S. I. .
SOLID STATE IONICS, 2017, 302 :133-137
[6]   Kinetics of NiO reduction and morphological changes in composite anodes of solid oxide fuel cells: Estimate using Raman scattering technique [J].
Agarkov, D. A. ;
Burmistrov, I. N. ;
Tsybrov, F. M. ;
Tartakovskii, I. I. ;
Kharton, V. V. ;
Bredikhin, S. I. .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2016, 52 (07) :600-605
[7]  
Agarkov D. A., 2015, ECS Transactions, V68, P2093, DOI 10.1149/06801.2093ecst
[8]  
Agarkov D.A., 2019, ECS T, V91, P2019
[9]  
Agarkov D.A., Patent, Patent No. [RU161095U1, 161095]
[10]  
Agarkov D.A., 2017, THESIS