Computing mean square approximations of random diffusion models with source term

被引:20
作者
Cortes, J. C. [1 ]
Jodar, L. [1 ]
Villafuerte, L. [1 ]
Villanueva, R. J. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain
关键词
random diffusion equation; mean square; numerical solution;
D O I
10.1016/j.matcom.2007.01.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a discrete numerical method for computing mean square approximations of random diffusion models. Mean square consistency of the random difference scheme is established. Sufficient conditions for the mean square stability of the proposed numerical solution are given. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 48
页数:5
相关论文
共 8 条
[1]  
BARRON R, 2002, P MET NUM ING CIENC, P267
[2]   Variable effort harvesting models in random environments: generalization to density-dependent noise intensities [J].
Braumann, CA .
MATHEMATICAL BIOSCIENCES, 2002, 177 :229-245
[3]   Analytic-numerical approximating processes of diffusion equation with data uncertainty [J].
Cortés, JC ;
Sevilla-Peris, P ;
Jódar, L .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (7-8) :1255-1266
[4]  
JODAR L, 2005, P ASMDA MAY 16 21 BR, P1303
[5]  
Kloeden P.E., 1992, Stochastic differential equations, V23
[6]  
SMITH GD, 1984, NUMERICAL SOLUTION P
[7]  
Soong TT., 1973, Random differential equations in science and engineering
[8]   EXPANSION OF THE GLOBAL ERROR FOR NUMERICAL SCHEMES SOLVING STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
TALAY, D ;
TUBARO, L .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1990, 8 (04) :483-509