3D ELECTRICAL IMPEDANCE TOMOGRAPHY RECONSTRUCTIONS FROM SIMULATED ELECTRODE DATA USING DIRECT INVERSION texp AND CALDERON METHODS

被引:7
作者
Hamilton, Sarah J. [1 ]
Isaacson, David [2 ]
Kolehmainen, Ville [3 ]
Muller, Peter A. [4 ]
Toivainen, Jussi [3 ]
Bray, Patrick F. [5 ]
机构
[1] Marquette Univ, Dept Math & Stat Sci, Milwaukee, WI 53233 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[3] Univ Eastern Finland, Dept Appl Phys, FI-70210 Kuopio, Finland
[4] Villanova Univ, Dept Math & Stat, Villanova, PA 19085 USA
[5] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
基金
芬兰科学院;
关键词
t(exp); Calderon; conductivity; complete electrode model; complex geometrical optics; D-BAR METHOD; GLOBAL UNIQUENESS; ALGORITHM; MODELS; IMPLEMENTATION; INFORMATION; CHEST;
D O I
10.3934/ipi.2021032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first numerical implementation of a t(exp) method in 3D using simulated electrode data is presented. Results are compared to Calderon's method as well as more common TV and smoothness regularization-based methods. The t(exp) method for EIT is based on tailor-made non-linear Fourier transforms involving the measured current and voltage data. Low-pass filtering in the non-linear Fourier domain is used to stabilize the reconstruction process. In 2D, t(exp) methods have shown great promise for providing robust real-time absolute and time-difference conductivity reconstructions but have yet to be used on practical electrode data in 3D, until now. Results are presented for simulated data for conductivity and permittivity with disjoint non-radially symmetric targets on spherical domains and noisy voltage data. The 3D t(exp) and Calderon methods are demonstrated to provide comparable quality to their 2D counterparts and hold promise for real-time reconstructions due to their fast, non-optimized, computational cost.
引用
收藏
页码:1135 / 1169
页数:35
相关论文
共 66 条
[21]   ELECTRODE MODELS FOR ELECTRIC-CURRENT COMPUTED-TOMOGRAPHY [J].
CHENG, KS ;
ISAACSON, D ;
NEWELL, JC ;
GISSER, DG .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1989, 36 (09) :918-924
[22]   Towards a d-bar reconstruction method for three-dimensional EIT [J].
Cornean, H. ;
Knudsen, K. ;
Siltanen, S. .
Journal of Inverse and Ill-Posed Problems, 2006, 14 (02) :111-134
[23]   2D D-bar reconstructions of human chest and tank data using an improved approximation to the scattering transform [J].
DeAngelo, M. ;
Mueller, J. L. .
PHYSIOLOGICAL MEASUREMENT, 2010, 31 (02) :221-232
[24]   NUMERICAL NONLINEAR COMPLEX GEOMETRICAL OPTICS ALGORITHM FOR THE 3D CALDERON PROBLEM [J].
Delbary, Fabrice ;
Knudsen, Kim .
INVERSE PROBLEMS AND IMAGING, 2014, 8 (04) :991-1012
[25]   Electrical impedance tomography: 3D reconstructions using scattering transforms [J].
Delbary, Fabrice ;
Hansen, Per Christian ;
Knudsen, Kim .
APPLICABLE ANALYSIS, 2012, 91 (04) :737-755
[26]   A REAL-TIME D-BAR ALGORITHM FOR 2-D ELECTRICAL IMPEDANCE TOMOGRAPHY DATA [J].
Dodd, Melody ;
Mueller, Jennifer L. .
INVERSE PROBLEMS AND IMAGING, 2014, 8 (04) :1013-1031
[27]  
Faddeev L., 1966, Sov. Phys. Dokl., V165, P1033
[28]   Experimental evaluation of 3D electrical impedance tomography with total variation prior [J].
Gonzalez, G. ;
Huttunen, J. M. J. ;
Kolehmainen, V. ;
Seppanen, A. ;
Vauhkonen, M. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (08) :1411-1431
[29]   Multi-frequency electrical impedance tomography and neuroimaging data in stroke patients [J].
Goren, Nir ;
Avery, James ;
Dowrick, Thomas ;
Mackle, Eleanor ;
Witkowska-Wrobel, Anna ;
Werring, David ;
Holder, David .
SCIENTIFIC DATA, 2018, 5
[30]   Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete [J].
Hallaji, Milad ;
Seppanen, Aku ;
Pour-Ghaz, Mohammad .
SMART MATERIALS AND STRUCTURES, 2014, 23 (08)