3D ELECTRICAL IMPEDANCE TOMOGRAPHY RECONSTRUCTIONS FROM SIMULATED ELECTRODE DATA USING DIRECT INVERSION texp AND CALDERON METHODS

被引:7
作者
Hamilton, Sarah J. [1 ]
Isaacson, David [2 ]
Kolehmainen, Ville [3 ]
Muller, Peter A. [4 ]
Toivainen, Jussi [3 ]
Bray, Patrick F. [5 ]
机构
[1] Marquette Univ, Dept Math & Stat Sci, Milwaukee, WI 53233 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[3] Univ Eastern Finland, Dept Appl Phys, FI-70210 Kuopio, Finland
[4] Villanova Univ, Dept Math & Stat, Villanova, PA 19085 USA
[5] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
基金
芬兰科学院;
关键词
t(exp); Calderon; conductivity; complete electrode model; complex geometrical optics; D-BAR METHOD; GLOBAL UNIQUENESS; ALGORITHM; MODELS; IMPLEMENTATION; INFORMATION; CHEST;
D O I
10.3934/ipi.2021032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first numerical implementation of a t(exp) method in 3D using simulated electrode data is presented. Results are compared to Calderon's method as well as more common TV and smoothness regularization-based methods. The t(exp) method for EIT is based on tailor-made non-linear Fourier transforms involving the measured current and voltage data. Low-pass filtering in the non-linear Fourier domain is used to stabilize the reconstruction process. In 2D, t(exp) methods have shown great promise for providing robust real-time absolute and time-difference conductivity reconstructions but have yet to be used on practical electrode data in 3D, until now. Results are presented for simulated data for conductivity and permittivity with disjoint non-radially symmetric targets on spherical domains and noisy voltage data. The 3D t(exp) and Calderon methods are demonstrated to provide comparable quality to their 2D counterparts and hold promise for real-time reconstructions due to their fast, non-optimized, computational cost.
引用
收藏
页码:1135 / 1169
页数:35
相关论文
共 66 条
[1]   GREIT: a unified approach to 2D linear EIT reconstruction of lung images [J].
Adler, Andy ;
Arnold, John H. ;
Bayford, Richard ;
Borsic, Andrea ;
Brown, Brian ;
Dixon, Paul ;
Faes, Theo J. C. ;
Frerichs, Inez ;
Gagnon, Herve ;
Gaerber, Yvo ;
Grychtol, Bartlomiej ;
Hahn, Guenter ;
Lionheart, William R. B. ;
Malik, Anjum ;
Patterson, Robert P. ;
Stocks, Janet ;
Tizzard, Andrew ;
Weiler, Norbert ;
Wolf, Gerhard K. .
PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) :S35-S55
[2]  
Alessandrini G., 1988, Applicable Analysis, V27, P153, DOI DOI 10.1080/00036818808839730
[3]   Dynamic optimized priors for D-bar reconstructions of human ventilation using electrical impedance tomography [J].
Alsaker, Melody ;
Mueller, Jennifer L. ;
Murthy, Rashmi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 :276-294
[4]  
Alsaker M, 2019, APPL COMPUT ELECTROM, V34, P325
[5]   A DIRECT D-BAR METHOD FOR PARTIAL BOUNDARY DATA ELECTRICAL IMPEDANCE TOMOGRAPHY WITH A PRIORI INFORMATION [J].
Alsaker, Melody ;
Hamilton, Sarah Jane ;
Hauptmann, Andreas .
INVERSE PROBLEMS AND IMAGING, 2017, 11 (03) :427-454
[6]   A D-Bar Algorithm with A Priori Information for 2-Dimensional Electrical Impedance Tomography [J].
Alsaker, Melody ;
Mueller, Jennifer L. .
SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04) :1619-1654
[7]  
[Anonymous], 2004, Electrical impedance tomography: methods, history and applications
[8]  
[Anonymous], 2011, DISCRETE CONT DYN-A
[9]   APPLIED POTENTIAL TOMOGRAPHY [J].
BARBER, DC ;
BROWN, BH .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1984, 17 (09) :723-733
[10]  
BEALS R, 1985, P SYMP PURE MATH, V43, P45