Co-occurrence map: Quantizing multidimensional texture histograms

被引:14
作者
Oja, E
Valkealahti, K
机构
[1] Helsinki University of Technology, Lab. of Comp. and Info. Science, FIN-02150 Espoo
关键词
texture analysis; multidimensional histograms; self-organizing map;
D O I
10.1016/0167-8655(96)00018-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Co-occurrence matrices, multidimensional co-occurrence histograms, and histograms reduced by vector quantization with the self-organizing map were compared in the classification of monochrome and color textures. Increasing the histogram dimensionality improved the classification. The highest accuracy was obtained with the reduced histograms.
引用
收藏
页码:723 / 730
页数:8
相关论文
共 6 条
[1]  
Kohonen T., 1995, SELF ORG MAPS
[2]  
KOIKKALAINEN P, 1994, P ECAI 94 11 EUR C A, P211
[3]   PERFORMANCE EVALUATION FOR 4 CLASSES OF TEXTURAL FEATURES [J].
OHANIAN, PP ;
DUBES, RC .
PATTERN RECOGNITION, 1992, 25 (08) :819-833
[4]  
OJA E, 1995, P IEEE INT C NEUR NE, V2, P1160
[5]  
Ojala T., 1994, P 12 IAPR INT C PATT, V1, P582, DOI DOI 10.1109/ICPR.1994.576366
[6]   TEXTURE FEATURES FOR CLASSIFICATION OF ULTRASONIC LIVER IMAGES [J].
WU, CM ;
CHEN, YC ;
HSIEH, KS .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) :141-152