QUALITY EVALUATION OF PROGRESSIVE LOSSY-TO-LOSSLESS REMOTE-SENSING IMAGE CODING

被引:5
作者
Blanes, Ian [1 ]
Serra-Sagrista, Joan [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, Barcelona, Spain
来源
2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6 | 2009年
关键词
Hyper-spectral image coding; progressive lossy-to-lossless; remote sensing; quality evaluation; multi-component JPEG2000; COMPRESSION;
D O I
10.1109/ICIP.2009.5414283
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Progressive lossy-to-lossless methods for hyper-spectral image coding are becoming common in remote-sensing. However, as remote-sensing imagery is sometimes fed directly into an automated process, there are several alternative distortion measures directed to quantify the image quality with regard to how this process will perform. In this scenario, we investigate the quality evolution in the lossy regime of progressive lossy-to-lossless and perform a detailed evaluation.
引用
收藏
页码:3709 / 3712
页数:4
相关论文
共 16 条
[1]  
BLANES I, 2009, DAT COMPR C 2009 DCC
[2]   Quality criteria benchmark for hyperspectral imagery [J].
Christophe, E ;
Léger, D ;
Mailhes, C .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (09) :2103-2114
[3]   The Mahalanobis distance [J].
De Maesschalck, R ;
Jouan-Rimbaud, D ;
Massart, DL .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (01) :1-18
[4]  
GINESU G, 2004, P INT C AC SPEECH SI, V3
[5]  
*GROUP INT COD IM, 2009, COD SOFTW
[6]  
Hao PW, 2003, IEEE IMAGE PROC, P633
[7]  
*JET PROP LAB NASA, 1997, AIRB VIS INFRARED IM
[8]  
MacQueen J., 1967, 5 BERK S MATH STAT P, P281
[9]   Optimized Onboard Lossless and Near-Lossless Compression of Hyperspectral Data Using CALIC [J].
Magli, Enrico ;
Olmo, Gabriella ;
Quacchio, Emanuele .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (01) :21-25
[10]   Lossless compression of hyperspectral images using lookup tables [J].
Mielikainen, J .
IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (03) :157-160