Mean Ergodic Theorems in Symmetric Spaces of Measurable Functions

被引:0
|
作者
Muratov, M. [1 ,2 ]
Pashkova, Yu [1 ,2 ]
Rubshtein, B-Z [1 ,2 ]
机构
[1] VI Vernadsky Crimean Fed Univ, Simferopol 295007, Russia
[2] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel
关键词
symmetric spaces; ergodic theorems; Cesaro averages; absolute contractions; norm convergence; conservative and strictly conservative operators;
D O I
10.1134/S1995080221050103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E = E(Omega, F, mu) be a symmetric Banach space of measurable functions on a measure space (Omega, F, mu). We prove a version of Mean (Statistical) Ergodic Theorem for Cesaro averages A(n),(T) f = 1/n Sigma(n)(k=1) Tk-1 f, f is an element of E, while operators on E are induced by positive absolute contraction in L-1 + L-infinity = (L-1 + L-infinity)(Omega, F, mu).
引用
收藏
页码:949 / 966
页数:18
相关论文
共 50 条
  • [41] Pseudosymmetric Spaces as Generalization of Symmetric spaces
    Bilal, Bilal
    Zeren, Yusuf
    Alizade, Betule
    Dal, Feyza Elif
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (01): : 61 - 79
  • [42] Ishikawa type mean convergence theorems for finding common fixed points of nonlinear mappings in Hilbert spaces
    Kondo, Atsumasa
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1417 - 1435
  • [43] ON UNIFORM CONVERGENCE IN ERGODIC THEOREMS FOR A CLASS OF SKEW PRODUCT TRANSFORMATIONS
    Brettschneier, Julia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) : 873 - 891
  • [44] Ergodic Theorems with Random Weights for Stationary Random Processes and Fields
    Arkady Tempelman
    Journal of Theoretical Probability, 2023, 36 : 1877 - 1901
  • [45] Γ-structures and symmetric spaces
    Hanke, Bernhard
    Quast, Peter
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (02): : 877 - 895
  • [46] Symmetric Spaces in Supergravity
    Ferrara, Sergio
    Marrani, Alessio
    SYMMETRY IN MATHEMATICS AND PHYSICS, 2009, 490 : 203 - +
  • [47] 'Spindles' in symmetric spaces
    Quast, Peter
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) : 985 - 994
  • [48] Parabolic symmetric spaces
    Lenka Zalabová
    Annals of Global Analysis and Geometry, 2010, 37 : 125 - 141
  • [49] Parabolic symmetric spaces
    Zalabova, Lenka
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (02) : 125 - 141
  • [50] Stationary and dynamical scattering problems and ergodic-type theorems
    Sakhnovich, Lev
    PHYSICS LETTERS A, 2017, 381 (36) : 3021 - 3027