Exact solutions of KdV equation with time-dependent coefficients

被引:15
作者
Johnpillai, A. G. [2 ]
Khalique, C. M. [2 ]
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Dept Math Sci, Ctr Res & Educ Opt Sci & Applicat, Appl Math Res Ctr, Dover, DE 19901 USA
[2] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, ZA-2735 Mmabatho, South Africa
基金
新加坡国家研究基金会;
关键词
Solitons; Lie symmetries; Integrability; MKDV;
D O I
10.1016/j.amc.2010.03.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Korteweg-de Vries (KdV) equation having time dependent coefficients from the Lie symmetry point of view. We obtain Lie point symmetries admitted by the equation for various forms for the time-dependent coefficients. We use the symmetries to construct the group-invariant solutions for each of the cases of the arbitrary coefficients. Subsequently, the 1-soliton solution is obtained by the aid of solitary wave ansatz method. It is observed that the soliton solution will exist provided that these time-dependent coefficients are all Riemann integrable. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3114 / 3119
页数:6
相关论文
共 11 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (9-10) :3503-3506
[3]  
Bluman G. W., 2013, Symmetries and Differential Equations, V81
[4]  
Ibragimov N.H., 1994, symmetries, exact solutions and conservation laws, V1-2
[5]   Exact solutions to the combined KdV-mKdV equation by the extended mapping method [J].
Krishnan, EV ;
Peng, YZ .
PHYSICA SCRIPTA, 2006, 73 (04) :405-409
[6]  
KRISHNAN EV, 2001, INT J MATH MATH SCI, V27, P215
[7]  
Olver P. J., 1986, Applications of Lie Groups to Differential Equations, DOI 10.1007/978-1-4684-0274-2
[8]   New exact explicit solutions of the generalized KdV equations [J].
Senthilkumaran, M. ;
Pandiaraja, D. ;
Vaganan, B. Mayil .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :693-699
[9]  
Tang XY, 2006, CHINESE PHYS LETT, V23, P887, DOI 10.1088/0256-307X/23/4/035
[10]   Exact linearization and invariant solutions of the generalized burgers equation with linear damping and variable viscosity [J].
Vaganan, B. Mayil ;
Kumaran, M. Senthil .
STUDIES IN APPLIED MATHEMATICS, 2006, 117 (02) :95-108