Combining deep learning model compression techniques

被引:1
作者
Santos Silva, Jose Vitor [1 ]
Matos Matos, Leonardo [1 ]
Santos, Flavio [2 ]
Magalhaes Cerqueira, Helisson Oliveira [1 ]
Macedo, Hendrik [1 ]
Piedade Prado, Bruno Otavio [1 ]
Ferreira da Silva, Gilton Jose [1 ]
Bispo, Kalil Araujo [1 ]
机构
[1] Univ Fed Sergipe UFS, Sao Cristovao, Sergipe, Brazil
[2] Univ Fed Pernambuco UFPE, Recife, PE, Brazil
关键词
Pulmonary diseases; Computational modeling; Deep learning; Adaptation models; X-ray imaging; Quantization (signal); Internet; model compression; dark knowledge distillation; pruning; quantization;
D O I
10.1109/TLA.2022.9667144
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we evaluate the performance of combining several model compression techniques. The techniques assessed were dark knowledge distillation, pruning, and quantization. We found that in the scenario in which we developed the experiments, classification of chest x-rays, the combination of these three techniques yielded a new model capable of aggregating the individual advantages of each one. In the experiments we used a combination of deep models with 95.05% accuracy, a value higher than that reported in some related works but lower than the state of the art, whose accuracy is 96.39%. The accuracy of the compressed model in turn was 90.86%, a small loss compared to the gain obtained from the reduction, in bytes, in relation to the size of the original model. The size has been reduced from 841MB to 40KB, which opens up the possibility for using deep models in edge computing applications.
引用
收藏
页码:458 / 464
页数:7
相关论文
共 21 条
[11]   Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [J].
Jacob, Benoit ;
Kligys, Skirmantas ;
Chen, Bo ;
Zhu, Menglong ;
Tang, Matthew ;
Howard, Andrew ;
Adam, Hartwig ;
Kalenichenko, Dmitry .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2704-2713
[12]   PRUNING VERSUS CLIPPING IN NEURAL NETWORKS [J].
JANOWSKY, SA .
PHYSICAL REVIEW A, 1989, 39 (12) :6600-6603
[13]   Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning [J].
Kermany, Daniel S. ;
Goldbaum, Michael ;
Cai, Wenjia ;
Valentim, Carolina C. S. ;
Liang, Huiying ;
Baxter, Sally L. ;
McKeown, Alex ;
Yang, Ge ;
Wu, Xiaokang ;
Yan, Fangbing ;
Dong, Justin ;
Prasadha, Made K. ;
Pei, Jacqueline ;
Ting, Magdalena ;
Zhu, Jie ;
Li, Christina ;
Hewett, Sierra ;
Dong, Jason ;
Ziyar, Ian ;
Shi, Alexander ;
Zhang, Runze ;
Zheng, Lianghong ;
Hou, Rui ;
Shi, William ;
Fu, Xin ;
Duan, Yaou ;
Huu, Viet A. N. ;
Wen, Cindy ;
Zhang, Edward D. ;
Zhang, Charlotte L. ;
Li, Oulan ;
Wang, Xiaobo ;
Singer, Michael A. ;
Sun, Xiaodong ;
Xu, Jie ;
Tafreshi, Ali ;
Lewis, M. Anthony ;
Xia, Huimin ;
Zhang, Kang .
CELL, 2018, 172 (05) :1122-+
[14]  
Kingma DP., 2014, ACS SYM SER
[15]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[16]  
Matos L, 2020, ANAIS 20 ESCOLA REGI, P51
[17]   Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists [J].
Rajpurkar, Pranav ;
Irvin, Jeremy ;
Ball, Robyn L. ;
Zhu, Kaylie ;
Yang, Brandon ;
Mehta, Hershel ;
Duan, Tony ;
Ding, Daisy ;
Bagul, Aarti ;
Langlotz, Curtis P. ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Blankenberg, Francis G. ;
Seekins, Jayne ;
Amrhein, Timothy J. ;
Mong, David A. ;
Halabi, Safwan S. ;
Zucker, Evan J. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[18]  
Simonyan K, 2015, Arxiv, DOI [arXiv:1409.1556, DOI 10.48550/ARXIV.1409.1556]
[19]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826
[20]  
Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594