Some spectral and quasi-spectral characterizations of distance-regular graphs

被引:5
作者
Abiad, A. [1 ,2 ]
van Dam, E. R. [1 ]
Fiol, M. A. [3 ]
机构
[1] Tilburg Univ, Dept Econometr & OR, Tilburg, Netherlands
[2] Maastricht Univ, Dept Quantitat Econ, Maastricht, Netherlands
[3] Univ Politecn Cataluna, Dept Matemat Barcelona, Grad Sch Math, Barcelona, Catalonia, Spain
关键词
Distance-regular graph; Eigenvalues; Girth; Odd-girth; Preintersection numbers; EXCESS THEOREM; POLYNOMIALS;
D O I
10.1016/j.jcta.2016.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the concept of preintersection numbers of a graph. These numbers are determined by the spectrum of the adjacency matrix of the graph, and generalize the intersection numbers of a distance-regular graph. By using the preintersection numbers we give some new spectral and quasi-spectral characterizations of distance-regularity, in particular for graphs with large girth or large odd-girth. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 25 条
[1]  
Biggs N.L., 1974, Algebraic Graph Theory
[2]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[3]   THE GEWIRTZ GRAPH - AN EXERCISE IN THE THEORY OF GRAPH SPECTRA [J].
BROUWER, AE ;
HAEMERS, WH .
EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (05) :397-407
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]  
Cámara M, 2009, ELECTRON J COMB, V16
[6]  
Cvetkovic D.M., 1982, Spectra of Graphs -Theory and Application, V2nd
[7]   On almost distance-regular graphs [J].
Dalfo, C. ;
van Dam, E. R. ;
Fiol, M. A. ;
Garriga, E. ;
Gorissen, B. L. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) :1094-1113
[8]   A simple proof of the spectral excess theorem for distance-regular graphs [J].
Fiol, M. A. ;
Gago, S. ;
Garriga, E. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2418-2422
[9]   From local adjacency polynomials to locally pseudo-distance-regular graphs [J].
Fiol, MA ;
Garriga, E .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :162-183
[10]   Algebraic characterizations of distance-regular graphs [J].
Fiol, MA .
DISCRETE MATHEMATICS, 2002, 246 (1-3) :111-129