Joint Symbol Rate-Modulation Format Identification and OSNR Estimation Using Random Forest Based Ensemble Learning for Intermediate Nodes

被引:12
作者
Chai, Jia [1 ]
Chen, Xue [1 ]
Zhao, Yan [2 ]
Yang, Tao [1 ]
Wang, Danshi [1 ]
Shi, Sheping [2 ]
机构
[1] Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] ZTE Corp, Beijing 100191, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2021年 / 13卷 / 06期
基金
中国国家自然科学基金;
关键词
Symbol rate and modulation format identification; OSNR estimation; random forest; intermediate nodes; low bandwidth; SYSTEMS;
D O I
10.1109/JPHOT.2021.3117984
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel joint symbol rate-modulation format identification (SR-MFI) and optical signal-to-noise ratio (OSNR) estimation scheme using the low-bandwidth coherent detecting and random forest (RF)-based ensemble learning is proposed for intermediate nodes in the flexible dense wavelength division multiplexing (F-DWDM) networks. By leveraging low-bandwidth coherent detecting with small bulk wavelength scanning, no chromatic dispersion compensation and low-complexity RF, the proposed scheme could serve as a reduced-complexity and cost-effective option to realize joint SR-MFI and OSNR estimation at intermediate nodes in F-DWDM networks. To verify the feasibility of the proposed scheme, the comprehensive simulations of 8/16 GBaud polarization division multiplexing (PDM)-4/16/32/64 quadrature amplitude modulation (QAM) systems are conducted. The simulation results show that the identification accuracy of SR-MFI reaches 100% and the mean absolute error of OSNR estimation is within 1 dB. Moreover, the proposedmonitoring scheme is verified by 8/16 GBaud PDM-4/16/32QAM coherent transmission experiments.
引用
收藏
页数:6
相关论文
共 28 条
[1]  
Biau G, 2012, J MACH LEARN RES, V13, P1063
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Cost-effective OSNR monitoring with large chromatic dispersion tolerance using random forest for intermediate nodes [J].
Chai, Jia ;
Zhao, Yan ;
Chen, Xue ;
Du, Jinhao ;
Li, Jian ;
Yang, Tao ;
Wang, Liqian ;
Zhang, Zhiguo .
OPTICS COMMUNICATIONS, 2021, 479
[4]   Multi-task deep neural network (MT-DNN) enabled optical performance monitoring from directly detected PDM-QAM signals [J].
Cheng, Yijun ;
Fu, Songnian ;
Tang, Ming ;
Liu, Deming .
OPTICS EXPRESS, 2019, 27 (13) :19062-19074
[5]   Optical Performance Monitoring: A Review of Current and Future Technologies [J].
Dong, Zhenhua ;
Khan, Faisal Nadeem ;
Sui, Qi ;
Zhong, Kangping ;
Lu, Chao ;
Lau, Alan Pak Tao .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (02) :525-543
[6]   Feature Fusion-Based Multi-Task ConvNet for Simultaneous Optical Performance Monitoring and Bit-Rate/Modulation Format Identification [J].
Fan, Xiaojie ;
Wang, Lina ;
Ren, Fang ;
Xie, Yulai ;
Lu, Xiang ;
Zhang, Yiying ;
Zhangsun, Tianwen ;
Chen, Wei ;
Wang, Jianping .
IEEE ACCESS, 2019, 7 :126709-126719
[7]   Joint Optical Performance Monitoring and Modulation Format/Bit-Rate Identification by CNN-Based Multi-Task Learning [J].
Fan, Xiaojie ;
Xie, Yulai ;
Ren, Fang ;
Zhang, Yiying ;
Huang, Xiaoshan ;
Chen, Wei ;
Zhangsun, Tianwen ;
Wang, Jianping .
IEEE PHOTONICS JOURNAL, 2018, 10 (05)
[8]   In-Band Estimation of Optical Signal-to-Noise Ratio From Equalized Signals in Digital Coherent Receivers [J].
Faruk, Md Saifuddin ;
Mori, Yojiro ;
Kikuchi, Kazuro .
IEEE PHOTONICS JOURNAL, 2014, 6 (01)
[9]  
Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601
[10]  
ITU-T, 2020, ITU T RECOMMENDATION