A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition

被引:163
作者
Noensie, EN
Dietz, HC [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Inst Med Genet, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Baltimore, MD 21205 USA
关键词
D O I
10.1038/88099
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Premature termination codons (PTCs) have been shown to initiate degradation of mutant transcripts through the nonsense-mediated messenger RNA (mRNA) decay (NMD) pathway. We report a strategy, termed gene identification by NMD inhibition (GINI), to identify genes harboring nonsense codons that underlie human diseases. In this strategy, the NMD pathway is pharmacologically inhibited in cultured patient cells, resulting in stabilization of nonsense transcripts. To distinguish stabilized nonsense transcripts from background transcripts upregulated by drug treatment, drug-induced expression changes are measured in control and disease cell lines with complementary DNA (cDNA) microarrays. Transcripts are ranked by a nonsense enrichment index (NEI), which relates expression changes for a given transcript in NMD-inhibited control and patient cell lines. The most promising candidates can be selected using information such as map location or biological function; however, an important advantage of the GINI strategy is that a priori information is not essential for disease gene identification. GINI was tested on colon cancer and Sandhoff disease cell lines, which contained previously characterized nonsense mutations in the MutL homolog 1 (MLH1) and hexosaminidase B (HEXB) genes, respectively. A list of genes was produced in which the MLH1 and HEXB genes were among the top 1% of candidates, thus validating the strategy.
引用
收藏
页码:434 / 439
页数:6
相关论文
共 23 条
[1]   Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay [J].
Atkin, AL ;
Schenkman, LR ;
Eastham, M ;
Dahlseid, JN ;
Lelivelt, MJ ;
Culbertson, MR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (35) :22163-22172
[2]  
ATKIN AL, 1995, MOL BIOL CELL, V6, P611
[3]  
Bateman JF, 1999, HUM MUTAT, V13, P311, DOI 10.1002/(SICI)1098-1004(1999)13:4<311::AID-HUMU8>3.3.CO
[4]  
2-G
[5]   SUPPRESSION OF A NONSENSE MUTATION IN MAMMALIAN-CELLS INVIVO BY THE AMINOGLYCOSIDE ANTIBIOTICS G-418 AND PAROMOMYCIN [J].
BURKE, JF ;
MOGG, AE .
NUCLEIC ACIDS RESEARCH, 1985, 13 (17) :6265-6272
[6]   A REGULATORY MECHANISM THAT DETECTS PREMATURE NONSENSE CODONS IN T-CELL RECEPTOR TRANSCRIPTS IN-VIVO IS REVERSED BY PROTEIN-SYNTHESIS INHIBITORS IN-VITRO [J].
CARTER, MS ;
DOSKOW, J ;
MORRIS, P ;
LI, SL ;
NHIM, RP ;
SANDSTEDT, S ;
WILKINSON, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (48) :28995-29003
[7]   RNA surveillance - unforeseen consequences for gene expression, inherited genetic disorders and cancer [J].
Culbertson, MR .
TRENDS IN GENETICS, 1999, 15 (02) :74-80
[8]  
Freddi S, 2000, AM J MED GENET, V90, P398, DOI 10.1002/(SICI)1096-8628(20000228)90:5<398::AID-AJMG10>3.3.CO
[9]  
2-Z
[10]   Nonsense-mediated mRNA decay in health and disease [J].
Frischmeyer, PA ;
Dietz, HC .
HUMAN MOLECULAR GENETICS, 1999, 8 (10) :1893-1900