Some further results on free quantale algebras

被引:3
作者
Wu, Hongwei [1 ]
Zhao, Bin [1 ]
Wang, Kaiyun [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantale; Q-module; Q-algebra; Free Q-algebra; CATEGORY;
D O I
10.1016/j.fss.2019.06.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we give the concrete form of a free Q-algebra over a quantale, where Q is a unital commutative quantale. On the basis of this result, we can obtain the concrete form of a free Q-algebra over a complete lattice (resp., a poset, a Q-module, a Q-poset). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 147
页数:6
相关论文
共 14 条
[1]  
Abramsky S., 1993, Mathematical Structures in Computer Science, V3, P161, DOI 10.1017/S0960129500000189
[2]  
Anderson F.W., 1990, RINGS CATEGORIES MOD
[3]  
Davey B.A., 2002, INTRO LATTICES ORDER, V2
[4]  
Han SW., 2016, The Basis of Quantale Theory
[5]  
Hungerford T. W., 2003, Algebra
[6]  
Kruml D, 2008, HBK ALGEBR, V5, P323, DOI 10.1016/S1570-7954(07)05006-1
[7]  
Li YM, 2002, J PURE APPL ALGEBRA, V176, P249
[8]   Free Q-algebras [J].
Pan, Fang-Fang ;
Han, Sheng-Wei .
FUZZY SETS AND SYSTEMS, 2014, 247 :138-150
[9]  
Rosenthal KI., 1990, Quantales and Their Applications
[10]   CHARACTERIZATION OF PROJECTIVE QUANTALES [J].
Rump, Wolfgang .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 100 (03) :403-420