Mathematical models of fibrin polymerization: past, present, and future

被引:9
作者
Nelson, Anna C. [1 ]
Kelley, Michael A. [2 ]
Haynes, Laura M. [3 ]
Leiderman, Karin [2 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27706 USA
[2] Colorado Sch Mines, Dept Appl Math & Stat, Golden, CO 80401 USA
[3] Univ Michigan, Life Sci Inst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Mathematical modeling; Fibrin polymerization; Thrombin-fibrin; MOLECULAR-SIZE DISTRIBUTION; FACTOR-XIII; SPLICE VARIANT; CLOT STRUCTURE; GEL FORMATION; FACTOR-V; THROMBIN; COAGULATION; BINDING; ACTIVATION;
D O I
10.1016/j.cobme.2021.100350
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Blood clotting is a complex biochemical and biophysical process that leads to the formation of a stabilizing fibrin mesh. Fibrin polymerization is a necessary, multi-stage component of this process and occurs on multiple temporal and spatial scales. These complexities make it difficult to predict how polymerization is affected by perturbations or under varying conditions. Mathematical modeling has been a fruitful approach in generating and testing novel hypotheses about this process. In this review, we focus on the historical context leading to current mathematical models of fibrin polymerization and discuss the contributions of biochemical interactions between thrombin, fibrin(ogen), and factor XIII. We highlight mathematical models that encompass multiple spatial and temporal scales (coarse-grain models, kinetic models, and models incorporating flow and transport effects). We also discuss the unique sets of challenges and benefits of each of these models, and finally, we suggest directions for future focus.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists [J].
Aldous, DJ .
BERNOULLI, 1999, 5 (01) :3-48
[2]   Evidence that fibrinogen γ′ directly interferes with protofibril growth: implications for fibrin structure and clot stiffness [J].
Allan, P. ;
de Willige, S. Uitte ;
Abou-Saleh, R. H. ;
Connell, S. D. ;
Ariens, R. A. S. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2012, 10 (06) :1072-1080
[3]   Molecular mapping of thrombin-receptor interactions [J].
Ayala, YM ;
Cantwell, AM ;
Rose, T ;
Bush, LA ;
Arosio, D ;
Di Cera, E .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2001, 45 (02) :107-116
[4]  
BANNINGER H, 1994, BIOCHEM J, V298, P157
[5]   2-STEP FIBRINOGEN-FIBRIN TRANSITION IN BLOOD-COAGULATION [J].
BLOMBACK, B ;
HESSEL, B ;
HOGG, D ;
THERKILDSEN, L .
NATURE, 1978, 275 (5680) :501-505
[6]   The interaction between fibrinogen and zymogen FXIII-A2B2 is mediated by fibrinogen residues γ390-396 and the FXIII-B subunits [J].
Byrnes, James R. ;
Wilson, Clare ;
Boutelle, Anthony M. ;
Brandner, Chase B. ;
Flick, Matthew J. ;
Philippou, Helen ;
Wolberg, Alisa S. .
BLOOD, 2016, 128 (15) :1969-1978
[7]   Newly-Recognized Roles of Factor XIII in Thrombosis [J].
Byrnes, James R. ;
Wolberg, Alisa S. .
SEMINARS IN THROMBOSIS AND HEMOSTASIS, 2016, 42 (04) :445-454
[8]   Dynamic imaging of fibrin network formation correlated with other measures of polymerization [J].
Chernysh, Irina N. ;
Weisel, John W. .
BLOOD, 2008, 111 (10) :4854-4861
[9]   Fibrin Clots Are Equilibrium Polymers That Can Be Remodeled Without Proteolytic Digestion [J].
Chernysh, Irina N. ;
Nagaswami, Chandrasekaran ;
Purohit, Prashant K. ;
Weisel, John W. .
SCIENTIFIC REPORTS, 2012, 2
[10]   Influence of γ′ fibrinogen splice variant on fibrin physical properties and fibrinolysis rate [J].
Collet, JP ;
Nagaswami, C ;
Farrell, DH ;
Montalescot, G ;
Weisel, JW .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2004, 24 (02) :382-386