Curl-Conforming Hierarchical Vector Bases for Triangles and Tetrahedra

被引:50
作者
Graglia, Roberto D. [1 ,2 ]
Peterson, Andrew F. [3 ]
Andriulli, Francesco P. [4 ]
机构
[1] Politecn Torino, Dipartimento Elettron, I-10129 Turin, Italy
[2] ISMB Ist Super Mario Boella, I-10138 Turin, Italy
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[4] TELECOM Bretagne, Microwave Dept, Ecole Bretagne, Brest, France
关键词
Basis functions; finite element methods; hierarchical basis functions; method of moments; FINITE-ELEMENTS; ELECTROMAGNETIC SCATTERING; NEDELEC ELEMENTS; MESHES; ORDER;
D O I
10.1109/TAP.2010.2103012
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new family of hierarchical vector bases is proposed for triangles and tetrahedra. These functions span the curl-conforming reduced-gradient spaces of Nedelec. The bases are constructed from orthogonal scalar polynomials to enhance their linear independence, which is a simpler process than an orthogonalization applied to the final vector functions. Specific functions are tabulated to order 6.5. Preliminary results confirm that the new bases produce reasonably well-conditioned matrices.
引用
收藏
页码:950 / 959
页数:10
相关论文
共 25 条
[1]   Orthogonal hierarchical Nedelec elements [J].
Abdul-Rahman, Razi ;
Kasper, Manfred .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) :1210-1213
[2]   Hierarchic finite element bases on unstructured tetrahedral meshes [J].
Ainsworth, M ;
Coyle, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (14) :2103-2130
[3]   Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes [J].
Ainsworth, M ;
Coyle, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (49-50) :6709-6733
[4]   Hierarchical tangential vector finite elements for tetrahedra [J].
Andersen, LS ;
Volakis, JL .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1998, 8 (03) :127-129
[5]   Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics [J].
Andersen, LS ;
Volakis, JL .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (01) :112-120
[6]   Condition numbers for various FEM matrices [J].
Andersen, LS ;
Volakis, JL .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1999, 13 (12) :1663-1679
[7]  
[Anonymous], 1968, HDB MATH FUNCTIONS
[8]  
CARRIE C, 1997, P IEEE INT ANT PROP, V2, P1301
[9]  
Graglia R. D., 2009, P ICEAA TOR IT SEP, V1, P1086, DOI DOI 10.1109/ICEAA.2009.5297791
[10]   Higher order interpolatory vector bases for computational electromagnetics [J].
Graglia, RD ;
Wilton, DR ;
Peterson, AF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :329-342